Aivoimplantit sekä muut sellaiset

ctg

Supreme Leader
BAN
Tähän ketjuun voi lisätä kaikkea asiaa implanteista sun muista cyberosista.
 
Pentagon on päättänyt että heille tulee liian kalliiksi kouluttaa uusia kavereita, jos vanhoista ressuista saadaan ehostettua lisäämällä aivoimplantti hoitamaan psyykkisiä ongelmia.

A new U.S. military program focused on brain implants could help diagnose and treat soldiers suffering from psychiatric disorders. The program funded by the U.S. Defense Advanced Research Projects Agency (DARPA) will develop a new generation of devices inspired by deep brain stimulation—a technology that uses implanted electrodes to electrically stimulate parts of the brain. But the new brain implants would start out by monitoring the brain activity of patients instead of stimulating them. The aim is to provide new insights into the workings of psychiatric disorders such as depression. The implants could then use targeted stimulation of certain brain regions to restore normal brain function over time
http://spectrum.ieee.org/tech-talk/...implants-to-restore-wounded-soldiers-memories
 

or the first time ever, a paralyzed man can move his fingers and hand with his own thoughts thanks to an innovative partnership between The Ohio State University Wexner Medical Center and Battelle.

Ian Burkhart, a 23-year-old quadriplegic from Dublin, Ohio, is the first patient to use Neurobridge, an electronic neural bypass for spinal cord injuries that reconnects the brain directly to muscles, allowing voluntary and functional control of a paralyzed limb. Burkhart is the first of a potential five participants in a clinical study.

"It's much like a heart bypass, but instead of bypassing blood, we're actually bypassing electrical signals," said Chad Bouton, research leader at Battelle. "We're taking those signals from the brain, going around the injury, and actually going directly to the muscles."

The Neurobridge technology combines algorithms that learn and decode the user's brain activity and a high-definition muscle stimulation sleeve that translates neural impulses from the brain and transmits new signals to the paralyzed limb. In this case, Ian's brain signals bypass his injured spinal cord and move his hand, hence the name Neurobridge.

Burkhart, who was paralyzed four years ago during a diving accident, viewed the opportunity to participate in the six-month, FDA-approved clinical trial at Ohio State's Wexner Medical Center as a chance to help others with spinal cord injuries.

"Initially, it piqued my interested because I like science, and it's pretty interesting," Burkhart said. "I've realized, 'You know what? This is the way it is. You're going to have to make the best out of it.' You can sit and complain about it, but that's not going to help you at all. So, you might as well work hard, do what you can and keep going on with life."

This technology has been a long time in the making. Working on the internally-funded project for nearly a decade to develop the algorithms, software and stimulation sleeve, Battelle scientists first recorded neural impulses from an electrode array implanted in a paralyzed person's brain. They used that data to illustrate the device's effect on the patient and prove the concept.

Two years ago, Bouton and his team began collaborating with Ohio State neuroscience researchers and clinicians Dr. Ali Rezai and Dr. Jerry Mysiwto design the clinical trials and validate the feasibility of using the Neurobridge technology in patients.

During a three-hour surgery on April 22, Rezai implanted a chip smaller than a pea onto the motor cortex of Burkhart's brain. The tiny chip interprets brain signals and sends them to a computer, which recodes and sends them to the high-definition electrode stimulation sleeve that stimulates the proper muscles to execute his desired movements. Within a tenth of a second, Burkhart's thoughts are translated into action.

"The surgery required the precise implantation of the micro-chip sensor in the area of Ian's brain that controls his arm and hand movements," Rezai said.

He said this technology may one day help patients affected by various brain and spinal cord injuries such as strokes and traumatic brain injury.

Battelle also developed a non-invasive neurostimulation technology in the form of a wearable sleeve that allows for precise activation of small muscle segments in the arm to enable individual finger movement, along with software that forms a 'virtual spinal cord' to allow for coordination of dynamic hand and wrist movements.

The Ohio State and Battelle teams worked together to figure out the correct sequence of electrodes to stimulate to allow Burkhart to move his fingers and hand functionally. For example, Burkhart uses different brain signals and muscles to rotate his hand, make a fist or pinch his fingers together to grasp an object, Mysiw said. As part of the study, Burkhart worked for months using the electrode sleeve to stimulate his forearm to rebuild his atrophied muscles so they would be more responsive to the electric stimulation.

"I've been doing rehabilitation for a lot of years, and this is a tremendous stride forward in what we can offer these people," said Mysiw, chair of the Department of Physical Medicine and Rehabilitation at Ohio State. "Now we're examining human-machine interfaces and interactions, and how that type of technology can help."

Burkhart is hopeful for his future.

"It's definitely great for me to be as young as I am when I was injured because the advancements in science and technology are growing rapidly and they're only going to continue to increase."
http://www.sciencedaily.com/release...Daily:+Top+Science+News)&utm_content=FaceBook
 
No one will ever fault DARPA, the Defense Department's mad science wing, for not being ambitious enough. Over the next four years, the first grantees in its Restoring Active Memory (RAM) program are expected to develop and test prosthetic memory devices that can be implanted in the human brain. It's hoped that such synthetic devices can help veterans with traumatic brain injuries, and other people whose natural memory function is impaired.

The two teams, led by researchers Itzhak Fried at UCLA and Mike Kahana at the University of Pennsylvania, will start with the fundamentals. They'll look for neural signals associated with the formation and recall of memories, and they'll work on computational models to describe how neurons carry out these processes, and to determine how an artificial device can replicate them. They'll also work with partners to develop real hardware suitable for the human brain. Such devices should ultimately be capable of recording the electrical activity of neurons, processing the information, and then stimulating other neurons as needed.

The RAM research derives from an engineering approach to memory that's gaining traction. (Spectrum covered the work of one of its leading proponents, Ted Berger, in the recent article The End of Disability.) If the brain is essentially a collection of circuits, the thinking goes, a memory is formed by the sequential actions of many neurons. If a person has a brain injury that knocks out some of those neurons, the whole circuit may malfunction, and the person will experience memory problems. But if electrodes can pick up the signal in the neurons upstream from the problem spot, and then convey that signal around the damage to intact neurons downstream, then the memory should function as normal.

In a press briefing yesterday, program manager Justin Sanchez said that the first human experiments will be conducted with hospitalized epilepsy patients who have electrodes implanted in their brains as they await surgery (this is done so their doctors can pinpoint the origin of their seizures). Since epilepsy patients often experience memory loss as well, Sanchez said they're a natural fit for the research. Eventually trials would include military servicemembers who suffer the aftereffects of traumatic brain injuries, and finally civilians with similar injuries.

DARPA recently decided to beef up its research in biological technologies, spurred in part by the needs of veterans returning from Iraq and Afghanistan. But it seems likely that the agency's increased attention to programs like RAM was also prompted by the recognition that neural engineering is one of the most exciting frontiers in science, with the neural technologies advancing faster than the science that guides it.

The RAM program is part of the overarching federal BRAIN Initiative, announced with much fanfare by President Obama in 2013. With a first-year budget of $110 million parceled out to three agencies and considerable cooperation from deep-pocketed private institutions, you can expect this decade to be a brainy one.
http://spectrum.ieee.org/tech-talk/...pa-wants-a-memory-prosthesis-for-injured-vets
 
Tuleekohan joskus aika jolloin sotilas on laitteilla paranneltu ihminen?

Silmässä kamera jossa kaiken muun lisäksi kohteen tunnistus, huippuun viritetty hermosto joka reagoi vaikka kameran tunnistamiin vihollisiin = tulenavaus jo alle vartti sekassa. Kehossa implantteja jotka parantaa voimaa ja kestävyyttä = takaisin haarniskaan ja tehokkaisiin aseisiin. Tähtäin kamerassa niinku lentokoneissa ja ampuminen onnistuu tätä kautta. Pystyy zoomaamaan kohteeseen kaukaa ja implanttikäsi ei vapise..
 
Ei ihan heti. Ihminen on kuitenkin niin huippuunsa virittynyt vekotin jo itsessään että sitä on aika vaikea millään mekaanisilla vempeleillä parantaa. Jotakin lisäät niin jossakin alkaa prakata. Ekso-luuranko (tai mikä vittu tuo suomeksi oikein on) on toki yksi mekaaninen voiman/kestävyyden lisääjä joka vaikuttaa lupaavalle, mutta se puetaan päälle.

Kemian keinot on tunnettuja ja tehokkaita ja ennenkaikkea ne vaan parantaa kropan omia mekanismeja:
1. Geenidoping, doping ylipäätään jotta suorituskyky saadaan nopeammin sille tasolle että tst-varustuksen kanssa pärjätään. Päästäisiin vaan tuosta järjettömästä WADAn ja urheilu-/lääkeyhteisön luomasta steroidikammosta. Ainetta löytyy läskin tehokkaaseen polttamiseen, palautumiskyvyn lisääntymiseen, tehokkaampaan proteiinisynteesiin (lihas kehittyy nopeammin), hapenottokykyä parantamaan, ja mihin kaikeen muuhun lienee... Jonkin verran on tuota puolta tullut seurailtua bodauspuolella jossa osa lajeista/lajiliitoista sallii kaikki "lääkeet" ja "lisäravinteet" ja saatana että on ainetta vaikka kuinka moneksi. Terveysvaikutukset pienempiä kuin millä tahansa särkylääkkeellä.

Kauhea ekspeetti en ole, mutta väittäisin että reserviläiset saadaan oikeaan taistelukuntoon 2-3 kertaa nopeammin kuin "ruisleivällä ja kaurapuurolla"... Jos ajattelisi että reserviläiset saadaan polttamaan 0,5kg läskiä viikossa (joka on aivan varmasti raakasti liian korkea tavoite, tuo vaatii jos kovaa omaa motivaatiota) niin kemiallisella avulla päästään varmaan tuplamäärään tuosta ja voi hyvinkin olla että ei vaadita edes niin kovaa motivaatiota pudottaa painoa, jos keskimäärin joku 10-15 kiloa pitäisi jokaisen tiputtaa niin puhutaan vain 2-3 kuukaudesta vs 6-9kuukautta. Läskin määrähän sitä reserviläisen kuntoa lopun viimein aika paljon määrittää. Toki lääkkeillä osa läskistä tulee lihaksena takaisin, mutta jos kaverit on laihdutuskuurilla eikä varsinaista voimaharjoittelua ole niin kovin isoa ei sekään välttämättä ole (tosin tutkimuksissa on saatu lihaskasvua pelkillä "lääkkeillä" aikaiseksi yhtä lailla kuin lihasvoimaharjoittelulla).

2. silmäleikkaukset/piilolinssit koska silmälasit on aika paha ongelma kenttäoloissa mutta etenkin nykyään ja tulevaisuudessa varmasti vielä enemmän (kypärään sitten heijastenäyttö toki). Tiedä mitä kuulolle voidaan tehdä.

3. Jotakin hermostostimulantteja opetellaan käyttämään tilanteen mukaan sekä kehitetään apuvälineitä hermoston hyvinvoinnin tarkkailuun. Tätä tehostetaan kykyä toimia silloin kun pitää ja toisaalta maksimoidaan lepo silloin kun siihen on mahdollisuus. Meniköhän se niin että ankarasta ratkaisutaisteluvaiheesta (intin loppusodan kestoinen pursitus) vaadittaisiin kuukauden/kuukasien palautuminen. Tuolla kentällä olisi tehtävissä varmasti paljon. Ei välttämättä niinkään siinä että miten nopeasti levossa palautuu, koska se on nykyisen tietäkyksen mukaan hidasta eikä siihen vippaskonsteja vaan ole (Tai no, kohdasta 1. näitä voisi löytyäkin, kiitos WADA). Mutta etenkin ratkaisutaisteluvaiheessa hermoston tilan tarkkailu ja toiminnan temmon säätely voi auttaa paljonkin siihen että ei ajauduta niin pahasti lukkoon. Samalla luonnollsesti kavereiden suorituskyky pysyy paremmin yllä eikä ala tapahtumaan "henkistä murenemista" niin helposti.

Noista valtaosa on jo olemassa ja osa käytössäkin. Enemmän tutkimusta ja laajempaan käyttöön... ja osa laillisiksi. :cool:

No yhtään aivoimplanttia en kyllä maininnut. :D
 
Viimeksi muokattu:
Ei ihan heti. Ihminen on kuitenkin niin huippuunsa virittynyt vekotin jo itsessään että sitä on aika vaikea millään mekaanisilla vempeleillä parantaa. Jotakin lisäät niin jossakin alkaa prakata. Ekso-luuranko (tai mikä vittu tuo suomeksi oikein on) on toki yksi mekaaninen voiman/kestävyyden lisääjä joka vaikuttaa lupaavalle, mutta se puetaan päälle.

Kemian keinot on tunnettuja ja tehokkaita ja ennenkaikkea ne vaan parantaa kropan omia mekanismeja:
1. Geenidoping, doping ylipäätään jotta suorituskyky saadaan nopeammin sille tasolle että tst-varustuksen kanssa pärjätään. Päästäisiin vaan tuosta järjettömästä WADAn ja urheilu-/lääkeyhteisön luomasta steroidikammosta. Ainetta löytyy läskin tehokkaaseen polttamiseen, palautumiskyvyn lisääntymiseen, tehokkaampaan proteiinisynteesiin (lihas kehittyy nopeammin), hapenottokykyä parantamaan, ja mihin kaikeen muuhun lienee... Jonkin verran on tuota puolta tullut seurailtua bodauspuolella jossa osa lajeista/lajiliitoista sallii kaikki "lääkeet" ja "lisäravinteet" ja saatana että on ainetta vaikka kuinka moneksi. Terveysvaikutukset pienempiä kuin millä tahansa särkylääkkeellä.

Kauhea ekspeetti en ole, mutta väittäisin että reserviläiset saadaan oikeaan taistelukuntoon 2-3 kertaa nopeammin kuin "ruisleivällä ja kaurapuurolla"... Jos ajattelisi että reserviläiset saadaan polttamaan 0,5kg läskiä viikossa (joka on aivan varmasti raakasti liian korkea tavoite, tuo vaatii jos kovaa omaa motivaatiota) niin kemiallisella avulla päästään varmaan tuplamäärään tuosta ja voi hyvinkin olla että ei vaadita edes niin kovaa motivaatiota pudottaa painoa, jos keskimäärin joku 10-15 kiloa pitäisi jokaisen tiputtaa niin puhutaan vain 2-3 kuukaudesta vs 6-9kuukautta. Läskin määrähän sitä reserviläisen kuntoa lopun viimein aika paljon määrittää. Toki lääkkeillä osa läskistä tulee lihaksena takaisin, mutta jos kaverit on laihdutuskuurilla eikä varsinaista voimaharjoittelua ole niin kovin isoa ei sekään välttämättä ole (tosin tutkimuksissa on saatu lihaskasvua pelkillä "lääkkeillä" aikaiseksi yhtä lailla kuin lihasvoimaharjoittelulla).

2. silmäleikkaukset/piilolinssit koska silmälasit on aika paha ongelma kenttäoloissa mutta etenkin nykyään ja tulevaisuudessa varmasti vielä enemmän (kypärään sitten heijastenäyttö toki). Tiedä mitä kuulolle voidaan tehdä.

3. Jotakin hermostostimulantteja opetellaan käyttämään tilanteen mukaan sekä kehitetään apuvälineitä hermoston hyvinvoinnin tarkkailuun. Tätä tehostetaan kykyä toimia silloin kun pitää ja toisaalta maksimoidaan lepo silloin kun siihen on mahdollisuus. Meniköhän se niin että ankarasta ratkaisutaisteluvaiheesta (intin loppusodan kestoinen pursitus) vaadittaisiin kuukauden/kuukasien palautuminen. Tuolla kentällä olisi tehtävissä varmasti paljon. Ei välttämättä niinkään siinä että miten nopeasti levossa palautuu, koska se on nykyisen tietäkyksen mukaan hidasta eikä siihen vippaskonsteja vaan ole (Tai no, kohdasta 1. näitä voisi löytyäkin, kiitos WADA). Mutta etenkin ratkaisutaisteluvaiheessa hermoston tilan tarkkailu ja toiminnan temmon säätely voi auttaa paljonkin siihen että ei ajauduta niin pahasti lukkoon. Samalla luonnollsesti kavereiden suorituskyky pysyy paremmin yllä eikä ala tapahtumaan "henkistä murenemista" niin helposti.

Noista valtaosa on jo olemassa ja osa käytössäkin. Enemmän tutkimusta ja laajempaan käyttöön... ja osa laillisiksi. :cool:

No yhtään aivoimplanttia en kyllä maininnut. :D


Jos tuohon Secondin viestiin jotain kommentoin, vähän niinkuin täydennyksenä....

1. Jo aikanaanhan taistelunkestävyyttä kasvatettiin erinäköisillä, muun muassa amfetamiinia sisältävillä, valmisteilla. Se mitä nykyään olisi saatavilla on todennäköisesti laajempaa kuin osataan kuvitellakaan. Hyvin näppärästi voisi kestävyyttä ja voimaa lisätä varsinkin kun siihen jonkun soppelin treeniohjelman lykkäisi mukaan.

2. Kuulollekin voi tehdä aika lailla. Jo nyt syntymästään lähes kuuroille asennetaan onnistuneesti korvaimplantteja eli sähköinen laite toimittaa viestin aivoihin joka tulkitsee sen normaaliksi kuulohavainnoksi. Tiedän tästä esimerkin tosielämästä. Tämäkin tekniikka kehittyy hurjaa vauhtia. Periaatteessa ns "superkuulon" värkkääminen ei ole mitenkään mahdotonta.
Että tämmöistä
 
Tuolla kriteerillä mäkin olen kyborgi, kun näköä on parannettu teknisellä laitteella. Nimittäin rilleillä. Ja yöllä väijyssä käytän aktiivikuulonsuojaimia jotka parantavat kuuloa.
 
Tervetuloa sitten vaan kummajaisten joukkoon terveisin nimimerkki "silmät fiksattu laserilla ja muuta pientä". Aika monikin on nykyään jotain muuta kuin "luomu", on tekoniveltä, sydäntä yms ja hyvä niin. Tuota pääkopan sisusta ja ruoansulatuselimistöä taitaa olla hankalin/mahdoton kopioida ainakaan nykytekniikalla mutta kaipa sekin aika joskus koittaa...
 
Tiesittekös että kun silmiä fiksataan laserilla, on muodikasta duunata vain toinen. Eli toinen jää likinäköiseksi, toinen on pitkänäköinen, ja kohta aivomöykkymme aivan sujuvasti yhdistää tarkan kuvan kummallekin etäisyydelle. Ei omaa kokemusta mutta kummin kaima kertoi että toimii.
 

Virtual reality can put you in another world—but what about another body? Yifei Chai, a student at the Imperial College London, is using the latest in virtual reality and 3D modeling hardware to virtually “possess” another person.

How does it work? One individual dons a headmounted, twin-angle camera and attaches electrical stimulators to their body. Meanwhile, another person wears an Oculus Rift virtual reality headset streaming footage from their friend’s camera/view.

A Microsoft Kinect 3D sensor tracks the Rift wearer’s body. The system shocks the appropriate muscles to force the possessed person to lift or lower their arms. The result? The individual wearing the Rift looks down and sees another body, a body that moves when they move—giving the illusion of inhabiting another’s body.
http://singularityhub.com/2014/07/3...er-persons-body-using-oculus-rift-and-kinect/
 

So once a person’s brain-wave data is streaming into a computer, what is to be done with it? OpenBCI will make some simple software available, but mostly Russomanno and Murphy plan to watch as inventors come up with new applications for BCIs.

Audette, the engineer from Creare, is already hacking robotic “battle spiders” that are typically steered by remote control. Audette used an OpenBCI prototype to identify three distinct brain-wave patterns that he can reproduce at will, and he sent those signals to a battle spider to command it to turn left or right or to walk straight ahead. “The first time you get something to move with your brain, the satisfaction is pretty amazing,” Audette says. “It’s like, ‘I am king of the world because I got this robot to move.’ ”

In Los Angeles, a group is using another prototype to give a paralyzed graffiti artist the ability to practice his craft again. The artist, Tempt One, was diagnosed with Lou Gehrig’s disease in 2003 and gradually progressed to the nightmarish “locked in” state. By 2010 he couldn’t move or speak and lay inert in a hospital bed—but with unimpaired consciousness, intellect, and creativity trapped inside his skull. Now his supporters are developing a system called the BrainWriter: They’re using OpenBCI to record the artist’s brain waves and are devising ways to use those brain waves to control the computer cursor so Tempt can sketch his designs on the screen.

Another early collaborator thinks that OpenBCI will be useful in mainstream medicine. David Putrino, director of telemedicine and virtual rehabilitation at the Burke Rehabilitation Center, in White Plains, N.Y., says he’s comparing the open-source system to the $60,000 clinic-grade EEG devices he typically works with. He calls the OpenBCI system robust and solid, saying, “There’s no reason why it shouldn’t be producing good signal.”

Putrino hopes to use OpenBCI to build a low-cost EEG system that patients can take home from the hospital, and he imagines a host of applications. Stroke patients, for example, could use it to determine when their brains are most receptive to physical therapy, and Parkinson’s patients could use it to find the optimal time to take their medications. “I’ve been playing around with these ideas for a decade,” Putrino says, “but they kept failing because the technology wasn’t quite there.” Now, he says, it’s time to start building.
http://spectrum.ieee.org/biomedical/devices/building-mindcontrolled-gadgets-just-got-easier
 
No longer just fantastical fodder for sci-fi buffs, cyborg technology is bringing us tangible progress toward real-life electronic skin, prosthetics and ultraflexible circuits. Now taking this human-machine concept to an unprecedented level, pioneering scientists are working on the seamless marriage between electronics and brain signaling with the potential to transform our understanding of how the brain works - and how to treat its most devastating diseases.

Their presentation is taking place at the 248th National Meeting and Exposition of the American Chemical Society (ACS), the world's largest scientific society. The meeting features nearly 12,000 presentations on a wide range of science topics and is being held here through Thursday.

"By focusing on the nanoelectronic connections between cells, we can do things no one has done before," says Charles M. Lieber, Ph.D.

"We're really going into a new size regime for not only the device that records or stimulates cellular activity, but also for the whole circuit. We can make it really look and behave like smart, soft biological material, and integrate it with cells and cellular networks at the whole-tissue level. This could get around a lot of serious health problems in neurodegenerative diseases in the future."
http://www.spacedaily.com/reports/On_the_frontiers_of_cyborg_science_999.html
 
09ECOGBrainInterfacing-1408367728713.jpg

Photo-illustration: Adeen Flinker/University of California, Berkeley
This photo-illustration shows the electrodes placed over the surface of a patient’s brain to record an electrocorticogram (ECoG).
Last year, an epilepsy patient awaiting brain surgery at the renowned Johns Hopkins Hospital occupied her time with an unusual activity. While doctors and neuroscientists clustered around, she repeatedly reached toward a video screen, which showed a small orange ball on a table. As she extended her hand, a robotic arm across the room also reached forward and grasped the actual orange ball on the actual table. In terms of robotics, this was nothing fancy. What made the accomplishment remarkable was that the woman was controlling the mechanical limb with her brain waves.
http://spectrum.ieee.org/biomedical/bionics/how-to-catch-brain-waves-in-a-net
 
“They’re trying to do 20 years of research in 4 years,” says Michael Kahana in a tone that’s a mixture of excitement and disbelief. Kahana, director of the Computational Memory Lab at the University of Pennsylvania, is mulling over the tall order from the U.S. Defense Advanced Research Projects Agency (DARPA). In the next four years, he and other researchers are charged with understanding the neuroscience of memory and then building a prosthetic memory device that’s ready for implantation in a human brain.

DARPA’s first contracts under its Restoring Active Memory (RAM) program challenge two research groups to construct implants for veterans with traumatic brain injuries that have impaired their memories. Over 270,000 U.S. military service members have suffered such injuries since 2000, according to DARPA, and there are no truly effective drug treatments. This program builds on an earlier DARPA initiative focused on building a memory prosthesis, under which a different group of researchers had dramatic success in improving recall in mice and monkeys.
http://spectrum.ieee.org/biomedical/bionics/darpa-project-starts-building-human-memory-prosthetics
 
nihms462801f6.jpg



There are a lot of fancy, high-tech prosthetics out there. Some can read electrical signals from the nerves and muscles of the remaining tissue, while others even interface with the brain to read a person’s intentions when she, say, wants to reach for a chocolate bar. There are also computerized exoskeletons that can turn a quadriplegic into a soccer player.

Those concepts are super cool, but they’re also super futuristic. As in, they probably won’t be available to regular people for a few decades. For now, the most common leg prosthetic is essentially a peg leg with a simple cup-shaped socket placed over the stump (or “residual limb," if you want to get technical). Those types of limbs tend to be uncomfortable; they cause chafing and alter the biomechanics of walking in ways that put strain on the back and other body parts.

A group of researchers at University College London has developed what may turn out to be a better idea. In a clinical trial that just wrapped, they implanted 20 amputees with prosthetics that interface directly with the patient’s skeleton. Voilà, the chafing disappears, and patients get a lot more tactile feedback than regular prosthetics.
http://www.popsci.com/article/science/prosthetic-leg-plugs-directly-skeleton?src=SOC&dom=tw
 
defense-large.jpg


Forget battlefield smartphones; the future of soldier-to-soldier communication may be electronic telepathy. A group of researchers in Europe have developed what they are calling the first “human brain-to-brain interface,” allowing people to communicate telepathically through the Internet without a surgical implant, bringing us closer to the day when soldiers behind enemy lines exchange information via sensors reading their thoughts.
http://www.defenseone.com/ideas/2014/09/actual-telepathy-one-step-closer-battlefield/92954/
 
BionicEye.jpg


In 1755, French physician and scientist Charles Leroy discharged the static electricity from a Leyden jar—a precursor of modern-day capacitors—into a blind patient’s body using two wires, one tightened around the head just above the eyes and the other around the leg. The patient, who had been blind for three months as a result of a high fever, described the experience like a flame passing downwards in front of his eyes. This was the first time an electrical device—serving as a rudimentary prosthesis—successfully restored even a flicker of visual perception.
http://www.the-scientist.com/?articles.view/articleNo/41052/title/The-Bionic-Eye/
 
5eabe607-dd3f-4f26-85ad-dc2a33b4d869-1414096497255.jpg

Photo: Justin Williams Research Group

Brain scientists first discovered how to use light to remotely control genetically-modified brain cells about a decade ago—a breakthrough that has enabled new scientific studies of depression, addiction and Parkinson’s disease. Now a new generation of transparent brain sensors could record brain cell responses without blocking the light’s access to the underlying brain tissue.
http://spectrum.ieee.org/tech-talk/...lectronics-pave-way-for-better-brain-implants
 
Back
Top