Energian tuotanto, kenttägeneraattorit ja muut


tollanen ja muutama kaasupullo ei olis vielä mahdottoman kallis setti. 11kg pullo riittää melkein 40 tuntia, viis pulloa riittää viikoksi ja jää vielä kaasua kokkaamiseenkin.
88kWh per vuorokausi riittää aika pitkälle 154m2 talossa, rakennusvuodesta ja eristyksistä riippuen -15…-30 pakkasiin asti.

nestekaasussa suomessa se hyvä puoli että sillä ei juuri kukaan lämmitä eikä sitä luultavasti hamstrata.
Nestekaasun polttaminen tuottaa tuhdin määrän määrän vesihöyryä ja hiilidioksidia.
Minulla on autotallin työhuoneessa käytössä vastaava nestekaasulämmitin, ja jo muutaman tunnin käytön jälkeen tila alkaa muistuttaa kosteanläyhkeää kasvihuonetta. Tuuletus vaikuttaa asiaan mutta sanoisin että tuuletusta ei voi lisätä riittävästi ilman että aletaan menettää lämmöt hukkaan. Ei sovi jatkuvaan, useita päiviä kestävään käyttöön. Lyhytaikaisessa käytössä sillä saa kuitenkin maltillisen kokoisessa tilassa lämmöt ylös nopeasti.

Katsoisin tilalle ehkä ennemmin valopetroolilämmitintä. Ei ole ongelmaton toki sekään.
 
A collaboration of researchers from various institutes in the Netherlands broke the 30 percent barrier associated with solar cells. The achievement will help uptakeworldwide solar energy and reduce our dependence on fossil fuels, an organizational press release said.

Even as governments across the world are promoting solar energy in their bid to reduce carbon emissions, the adoption of the technology has been limited by its energy conversion efficiency. Most commercially available solar panels top out at 22 percent energy conversion efficiency.
To do so, researchers in the Netherlands came together to create a four-terminal perovskite/silicon tandem device. A tandem device can better use solar spectrum since it uses a mix of silicon-based solar cells with perovskite-based solar cells. While the former works well with light in the visible and infrared spectrum, perovskites can use wavelength in the ultraviolet and visible light while being transparent to infrared light.

In a four-terminal tandem device, the top and bottom cells can operate independently, allowing bifacial tandems to be used, further boosting the power output of the architecture.

The press release said that the researchers improved the efficiency of a semi-transparent perovskite cell with an area of 3x3 sq. mm up to 19.7 percent. Below this, a silicon solar cell, which was 20X 20 sq. mm wide, was placed. The tandem device also had a highly transparent back contact that allowed 93 percent of the near-infrared light to reach the bottom of the device.

The silicon device was optimized using a host of features, and its efficiency improved to 10.4 percent. Together with the perovskite solar cell, the device delivered a combined energy conversion efficiency of 30.1 percent, making it the best efficiency achieved so far.
 
The world's largest vanadium redox flow battery (VRFB) has been connected to the grid in Dalian, China, where it was built using technology patented in the United States.

With a current capacity of 100MW/400MWh and plans to double it, the Dalian VRFB will reportedly be able to meet the daily energy needs of 200,000 people, the Chinese Academy of Sciences (CAS) said. The battery will be used to manage supplies during peak power demand periods, and could allow electricity companies in the Dalian region to adopt more renewables to feed the system.

VRFBs are free of lithium-ion and are far safer than traditional batteries, instead relying on mixtures of liquid electrolytes and acids. VRFBs can hold a charge for far longer than traditional batteries as well, and are also designed to be charged and discharged for decades without degrading.

The Dalian VRFB dwarfs other projects – Australia's largest VRFB only boasts 2MW/8MWh of capacity, and a similar test project in the San Diego area recently stood up a similarly sized battery. Other large VRFB projects are still far smaller, like the Sumitomo battery in Hokkaido, Japan, that was brought online earlier this year. It has a capacity of 17MW/51MWh and was described as one of the world's largest VRFBs.
 
Beaming solar power could help Europe access more renewable energies, in an independent way. Airbus has now demonstrated how this new technological concept could work in its X-Works Innovation Factory.

Everything is illuminated, thumbs up. Jean-Dominique Coste, Yoann Thueux and their colleagues have just shown decision-makers from politics and industry the inner workings of a new energy concept, which had until now only been on the radar of die-hard tech experts: Power Beaming.

The underlying principle is quite simple, explains Jean-Dominique Coste, who is responsible for this technology at Airbus: "The potential of the technology is to capture sunlight and then beam it wirelessly." On Earth, this solar energy would then supply cities, factories, households and eventually aeroplanes with electricity.

Not least for this reason, Coste says, power beaming could offer Europe and other parts of the world huge potential to tap into renewable energy sources and contribute to the goal of being carbon-neutral by 2050. "Power beaming technologies would enable the creation of new energy networks in the sky and could help solve the energy problem," Coste says. "They would enable countries to fully control and distribute their energy where needed, independently."

The demonstration at Airbus' X-Works Innovation Factory on 27 September 2022 was a success, albeit on a smaller scale: using microwave beaming, Coste, Thueux and their colleagues transmitted green energy between two points representing 'Space' and 'Earth' over a distance of 36 metres, producing green hydrogen and bringing a model city to life. "Now that we have successfully tested the key bricks of a future space-based solar power system on a small scale for the first time, we are now ready to take Power Beaming to the next level", says Yoann Thueux.

The demo was undoubtedly a success, but how will the technology work in real life? "We are looking at a number of designs," explains Thueux. One thing, however, is already clear: If satellites were to collect the sunlight, they would need to measure about 2 kilometres across to achieve the same power level as a nuclear power plant."

The advantages of collecting solar power in space are obvious, says Thueux: "Outside the Earth's atmosphere, the sun's light is available indefinitely, not just during the day and in good weather like on Earth, plus it's about 50 percent more intense." For example, in geostationary orbit about 36,000 kilometres above Earth, a solar panel the same size as one of its counterparts on Earth can generate significantly more electricity.

The power collected would be beamed down over a wide area in a safe and controlled manner. Back on Earth, a large number of antennas spread over a wide area, even off-shore, would pick up the beams and the energy would be reassembled to produce electricity. "The beams pass through clouds easily so loss of power is minimal. Also, the technology can be designed to prevent harm to birds or people flying in aircraft," assures Coste. Moreover, there is no need for complex and costly ground infrastructure, power plants, pipelines or cables, for example, to distribute the electricity on Earth. That, too, is done by Power Beaming.

Coste estimates that the levelised costs of energy would be the same as those of large-scale energy projects on Earth such as nuclear power plants, oil rigs and large renewable farms. Costs, though, would decrease as more power factories are built, due to economies of scale. One geostationary solar farm would generate about 2 gigawatts of electricity - the equivalent of one large fossil fuel or nuclear power station on Earth.

By the early 2030s, the first operating Power Beaming prototypes could be in use. But there is still work to be done. A major area of research concerns the overall efficiency: getting as much energy as you can from what you harness. "We advocate a stepped approach to scale the system: from the ground, to aerial systems, then in space", explains Jean-Dominique Coste, adding: "This could in fact be a game changer for aircraft, with the potential to extend the range, reduce the weight, but also to relay power to other places, managing energy like data. This has raised a lot of interest in the energy sector. In the end this will be a joint effort with institutions and the energy industry."
 
As the US Department of Energy (DoE) continues to look for ways to improve molten salt nuclear reactors (MSRs), a team from Brigham Young University in Utah has designed one it says can fit safely in the bed of a 40-foot truck.

The molten salt micro-nuclear reactor, which will be built by Professor Matthew Memmott and his team, has a chamber that measures just four by seven feet (1.2 x 2.1 metres), has no risk of a meltdown, and can produce enough energy to power 1,000 homes, the university said. Prof Memmott separately told The Register the reactor's output should be around 10MWe.

"For the last 60 years, people have had the gut reaction that nuclear is bad, it's big, it's dangerous," the professor said. "Those perceptions are based on potential issues for generation one, but having the molten salt reactor is the equivalent of having a silicon chip. We can have smaller, safer, cheaper reactors and get rid of those problems."
Unlike traditional light-water reactors, which typically store uranium fuel in solid rods that have to be kept cool with liquid water to avoid a meltdown, MSRs instead dissolve fissile material into a molten salt that also acts as the reactor's primary coolant. Treating the fuel and primary coolant as one, and not relying on keeping water coolant flowing and below boiling point, is seen as one safety advantage, among others, for MSRs.

In a typical MSR, the primary fuel salt, with its high melting point of 1022°F (550°C), moves through the reactor and transfers its heat to non-radioactive secondary coolant salt, which can pass on its heat to other things, such as traditional steam-turbine-driven electricity generators.

According to Prof Memmott, nuclear power, and molten salt in particular, is an ideal solution to the world's current energy conundrum because it is safe and stable, the core reaction doesn't produce carbon emissions, and it generates valuable elements accessible for reprocessing after the reaction is complete.

According to his university, the waste generated by an MSR reactor would allow companies to extract Molybdenum-99, an expensive element used in medical imaging; Cobalt-60; gold; platinum; neodymium; and other elements that could be sold for other applications.

Additionally, Prof Memmott said his team were able to pull oxygen and hydrogen from the salts as well. "Through this process, we can make the salt fully clean again and reuse it. We can recycle the salt indefinitely," he said.
Tässä rupeaa olemaan todellisen kenttägeneraattorin olo. Rekkaan menevä ydinreaktori, joka ei ole ympäristölleen vaarallinen, paitsi katastrofaalisessa tilanteessa. Voimaa riittää pitämään pieni pitäjä sähköistettynä.
 
Experimental tech designed to cool NASA equipment in space has an Earth-bound use as well: slashing electric vehicle charging times to five minutes or less.

Using a technique known as "subcooled flow boiling," this technology could boost the amount of electrical current today's EV chargers are able to supply to automobiles, by improving the transfer of heat from the charging cables, the US space agency explained on Tuesday. That would dramatically reduce the amount of time taken to charge a vehicle.

NASA reckons a current of at least 1,400 amps would be enough to charge a car within five minutes. To put this in context, advanced chargers available to science and industry today only deliver currents up to 520 amps, while most chargers on the market for consumers "support currents of less than 150 amps."

A team at Purdue University, headed by mechanical engineering professor Issam Mudawar and sponsored by NASA's Biological and Physical Sciences Division, said it has achieved 2,400 amps along a cable using subcooled flow boiling, far more than what would be required to charge an EV in five minutes or less. Note that this was a lab experiment with just the cable: a vehicle in the real world would need a suitably rated battery and power supply as well as a cooled cable to achieve that sub-5 minute charge.

The academics' cable design, we're told, could be used "to deliver 4.6 times the current of the fastest available electric vehicle chargers on the market today by removing up to 24.22 kilowatts of heat." That 4.6 figure is from taking 2,400 amps and dividing it by the 520 amps of an advanced charger.

EV auto varapatteri voi olla hyvinkin toimiva idea.
 
Galvion_to_introduce_new_Nerv_Centr_SoloPack_II_battery_at_AUSA_2022_defense_exhibition.jpg

Operations today depend on more charged equipment than ever before, and the complexity of sustaining soldiers on the battlefield expands and shifts with every new technology. Radios, NVGs, GPS, smartphones, laptops, drones, and other surveillance equipment all demand significant power, and the ability to manage that power effectively is mission-critical. Galvion’s new SoloPack II builds on the widely adopted and field-proven functionality of the original SoloPack battery, while offering a number of additional features to further support the modern soldier.

Small, lightweight and energy-dense, the next-generation SoloPack II offers 140Wh of energy (40% more power storage capacity than SoloPack), while maintaining the familiar, soldier-centric form factor users expect from the Nerv Centr suite of products. SoloPack II fits into a magazine pouch for ease of storage and weighs only 1.65lbs (750 grams). A flexible flying lead connects in any orientation, and the next-generation NettWarrior connector allows faster charging and additional current flow, while remaining backward compatible with standard US NettWarrior and NATO STANAG 4695 for ease of integration and improved logistic sustainability on the battlefield. The SoloPack II has a state-of-charge display for real-time remaining capacity at the press of a button, convenient bottom contact charging and can be recharged while in-flight and connected to Galvion’s SquadPower Manager (SPM) which is certified safe-to-fly.

Kristen Lomastro, President of Active Systems, said: “The SoloPack II is a prime example Galvion’s unyielding commitment to enhancing the operational effectiveness of those who are out in the field, protecting us. We listened to our end-users – they wanted more power, but without the additional bulk and weight – and we delivered a solution that offers longer mission capability, while reducing logistics and minimizing weight burden.”She added: “The less soldiers have to think about while out there, the safer the mission, and that is what drives everything that we do here.”

The higher capacity SoloPack II is designed to support operational power needs for missions of up to 24 hours, while the original 98Wh SoloPack battery supports short-duration missions of up to 12 hours. With expected availability in early 2023, Galvion’s 140Wh SoloPack II rechargeable battery offers users an additional scalable power solution to suit any mission needs.
 
General Motors is creating a new energy business to sell batteries, charging equipment, solar panels, and software to residential and commercial customers in a broad-based effort to create a range of accessories that can help sell its lineup of electric vehicles. The Verge reports:
The new division, GM Energy, is also a direct shot at Tesla as a major player in renewable energy generation and storage. GM has said it intends to eventually overtake Elon Musk's company in vehicles sales -- and now it wants to challenge it on the energy front as well. Travis Hester, GM's chief EV officer, said the company is making a serious grab for a piece of what is potentially a $120-150 billion market for energy generation and storage products. The aim is to make GM's brand synonymous with not just electric vehicles, but a whole host of products and services in orbit around EVs and their rechargeable lithium-ion batteries.

GM Energy will be comprised of three units: Ultium Home, Ultium Commercial, and Ultium Charge 360, which is the company's EV charging program. The division will sell a range of products to residential and commercial customers, including bi-directional charging equipment, vehicle-to- home (V2H) and vehicle-to-grid (V2G) equipment, stationary storage, solar products, software applications, cloud management tools, microgrid solutions, and hydrogen fuel cells. GM Energy will also be in the virtual power plant business. Many EVs with high-capacity batteries are being marketed for their ability to serve as backup power in the event of a blackout. (Hester notes that the Chevy Silverado EV, with its 200kWh battery pack, can power an average sized home for 21 days.) EVs can also feed power back into the grid during times of peak demand. GM Energy will be the entity that sells that power back to the utilities during times of high-energy consumption.

For solar energy, GM is teaming up with San Jose-based SunPower to sell solar panels and home energy storage products to residential customers. SunPower and other partners will supply the solar panels and perform the installations, with GM developing the complimentary software. Over time, as GM's battery factories come online and production of its Ultium-branded battery systems ramps up, the company intends on swapping in its own battery cells and storage units, Hester said. The automaker is also planning on manufacturing its own line of backup power generators using its Hydrotec-branded hydrogen fuel cells. (Ultium is the name of GM's electric vehicle battery and powertrain technology. Last year, the company said the Ultium Charge 360 network would be the name given to GM's own vehicle apps and software with a variety of third-party charging services, such as Blink, ChargePoint, EVgo, Flo, Greenlots, and SemaConnect.)
"But much like its approach to EVs, the dates for the launch of these new products are still a ways off in the future," adds The Verge. "
GM is still testing its V2H service in partnership with PG&E with a small sample of residential customers in California, and plans on expanding it to more homes in early 2023. And its solar products won't be available until 2024."
 
Kusti polkas perjantaina tälläsen puolasta:

Akkusähkö loppuu ensimmäisenä jos kakka osuu tuulettimen, pari vuorokautta pärjäilee kun käyttää yhden autonakun ja pari sähköpyörän akkua tyhjäksi.

Toimisi lie hyvin myös telttalämmittimenä. Helpompi lämpökameroita ajatellen naamioida tämmöinen teltan vieressä maassa istuva tohotin, verrattuna siihen että laitetaan katolle hohkaava kaminanpiippu majakaksi.

Lämmön tuonti puhaltimella sisään varmaan myös pitää teltan lämpimämpänä. Normaalisti kamina imee korvausilmaa liepeiden alta, niin alanurkat jäävät kylmiksi. Puhaltimen kanssa taas on enemmänkin ylipaine.
 
Viimeksi muokattu:
Tähän esimerkkitapaukseen suosittelen HETI teetättämään/ asennuttamaan verkonvaihtokytkimen ja hankkimaan riittävän tehokkaan 3-vaiheaggrekaatin. Näillä saat talon pumput ja muut laitteet toimimaan normaalisti ilman valtakunnanverkkoa. Jos joku iso muuntamo on palanut kivijalkaan niin katkos voi olla päiviä ennen kuin korvaava kierrätys sähkölle toimii. Ja se että uusi muuntaja saadaan on useamman kuukauden juttu luultavasti. Jos useita muuntajia on mystisesti palanut yöllä niin sitten vielä pidempi katkos luvassa..
Mitenhän näiden maalämpöpumppujen energiantarve menee? Meillä ois landella valmiina 4,3 kw dieselgenu. Jos maalämpöpumpun kulutus paukkupakkasilla on esim 8 kw ja genu tuottaa tuon 4, pyöriikö pumppu ollenkaan, vai toimiiko se vajaateholla? Yritin tässä selvitellä Nibe f1245:n kulutusta huonolla menestyksellä. Ilmeisesti muuttujia on suhteellisen paljon.
 
Mitenhän näiden maalämpöpumppujen energiantarve menee? Meillä ois landella valmiina 4,3 kw dieselgenu. Jos maalämpöpumpun kulutus paukkupakkasilla on esim 8 kw ja genu tuottaa tuon 4, pyöriikö pumppu ollenkaan, vai toimiiko se vajaateholla? Yritin tässä selvitellä Nibe f1245:n kulutusta huonolla menestyksellä. Ilmeisesti muuttujia on suhteellisen paljon.
Ei se taida pyöriä ollenkaan jos ei ole tehoa tarpeeksi? Voi olla että se generaattori sammuu kun kytketään laitteet päälle. Sähkömoottori tarvii käynnistykseensä enemmän tehoa kuin sen ilmoitettu normaali tehontarve.
 
Polkugeneraattori. Sakuilla oli arktisen alueen miehitetyillä sääasemilla radioita varten polkugeneraattori...
 

Hyvästi, laturi? Tämä kolikon kokoinen akku tuottaa virtaa puhelimeesi 50 vuotta​

Ydinparistoa voisi Betavoltin mukaan käyttää matkapuhelimissa, joita ei tarvitse koskaan ladata tai drooneissa, jotka pystyvät lentämään ikuisesti.

 

Hyvästi, laturi? Tämä kolikon kokoinen akku tuottaa virtaa puhelimeesi 50 vuotta​

Ydinparistoa voisi Betavoltin mukaan käyttää matkapuhelimissa, joita ei tarvitse koskaan ladata tai drooneissa, jotka pystyvät lentämään ikuisesti.

Siinä on "ydin" mukana, joten ei sovellu Suomeen.
 
Siinä on "ydin" mukana, joten ei sovellu Suomeen.
Täällä vihervasemmisto hyppisi tasajalkaa jos tuollaisia tänne alettaisiin hommaamaan. Tuulimyllyjä ja aurinkovoimaloita vaan mäet, pellot ja metsät täyteen. Sillä se luonto ja ilmastopelastuu.
 
Mitenhän näiden maalämpöpumppujen energiantarve menee? Meillä ois landella valmiina 4,3 kw dieselgenu. Jos maalämpöpumpun kulutus paukkupakkasilla on esim 8 kw ja genu tuottaa tuon 4, pyöriikö pumppu ollenkaan, vai toimiiko se vajaateholla? Yritin tässä selvitellä Nibe f1245:n kulutusta huonolla menestyksellä. Ilmeisesti muuttujia on suhteellisen paljon.

Pikaisella vilkaisulla niin tuon Niben sähkövastuksissa on 7 eri teho asetusta ja varo asetuksilla sitä voi rajata esim 2 kW.
Jolloin sitä vois kuvitella että 4.3 kW kenulla se toimii. Tosin en löytänyt kopressorin tehoa...
 
Pikaisella vilkaisulla niin tuon Niben sähkövastuksissa on 7 eri teho asetusta ja varo asetuksilla sitä voi rajata esim 2 kW.
Jolloin sitä vois kuvitella että 4.3 kW kenulla se toimii. Tosin en löytänyt kopressorin tehoa...
Tuo kysymys oli esitetty vuonna 2022.

Tästä Nibe f1245 on useita malleja joissa on erilainen kompressori. Niistä pienimmälle ilmoitetaan:
"Maks. käyttövirta mkl. 0 kW sähkövastus (suositeltu varoke), Arms: 5,3 (16)"
https://assetstore.nibe.se/hcms/v2.3/entity/document/27518/storage/MDI3NTE4LzAvbWFzdGVy

Eli sähköntarve on ilman vastuksia on enimmillään 3,7 kVA (jos vaiheiden kuormitus on symmetrinen). Ilmoitetulla 4,3 kW generaattorilla saattaisi olla edellytyksiä pyörittää lämpömppua, jos vastukset on kytketty pois ja generaattori on 3-vaiheinen. Käynnistysvirraksi kuitenkin ilmoitetaan (sivulla 69) 13 A mihin mainittu generaattori ei kykene. Laitteen käynnistäminen saattaa olla haasteellista ja generaattorilla lämmittäminen muutenkaan ei ole kovin optimaalista.
 
Tuo kysymys oli esitetty vuonna 2022.

Tästä Nibe f1245 on useita malleja joissa on erilainen kompressori. Niistä pienimmälle ilmoitetaan:
"Maks. käyttövirta mkl. 0 kW sähkövastus (suositeltu varoke), Arms: 5,3 (16)"
https://assetstore.nibe.se/hcms/v2.3/entity/document/27518/storage/MDI3NTE4LzAvbWFzdGVy

Eli sähköntarve on ilman vastuksia on enimmillään 3,7 kVA (jos vaiheiden kuormitus on symmetrinen). Ilmoitetulla 4,3 kW generaattorilla saattaisi olla edellytyksiä pyörittää lämpömppua, jos vastukset on kytketty pois ja generaattori on 3-vaiheinen. Käynnistysvirraksi kuitenkin ilmoitetaan (sivulla 69) 13 A mihin mainittu generaattori ei kykene. Laitteen käynnistäminen saattaa olla haasteellista ja generaattorilla lämmittäminen muutenkaan ei ole kovin optimaalista.
Kaikenlaiset varavirta- ja muut varajärjestelmät kannattaa tietysti kokeilla hyvän sään aikana ja päivänvalossa. Oma näkemys/kokemus aggrikaatilla talon sähköistykseen sanoo että ne 3-vaiheiset alle 10 kw-aggrikaatit ei ihmeitä tee. Liian iso kuorman sammuttaa sen äkkiä. Mutta valaistus ja kiertovesipumput toimii, mikä itselleni riittää.
 
Back
Top