Earlier this year, GPS manufacturer
U-blox released the first commercially available spoofing defense for consumer GPS receivers in a firmware update to its M8 line of navigation systems. The company, based in Switzerland, did not announce details about the detection method it has deployed. However, we’re pretty sure that it is distortion detection because that approach is easiest to implement through a firmware update, requiring only some additional signal-processing algorithms.
But distortion-based methods may miss attacks that they fail to catch early. Cryptographic methods are very effective (just ask the U.S. military) but require either substantial changes in how GPS signals are broadcast or an additional high-bandwidth communications link. Architects of Europe’s new
global navigation satellite system [pdf], called Galileo, have embraced this approach and have tested the broadcasting of digitally encrypted signals for civilians over their system. Unfortunately, such a system would still be vulnerable to a meaconing attack.
Direction-of-arrival sensing is our method of choice, but it is typically more expensive to implement than distortion detection. The process itself is most effective when executed by multiple antennas, but large arrays can’t easily fit on handheld devices. And partial spoofing can dupe it: If a spoofer targets only one or two GPS signals instead of all signals from every satellite within range, some variance in the carrier-phase difference will persist even after the attack.
In the end, we think the strongest spoofing defenses will probably combine distortion detection and direction-of-arrival sensing. Distortion detection will help during the initial attack phases, while direction-of-arrival sensing provides a second line of defense.
However, we can’t guarantee that any such combination of solutions will be affordable for the average user. Commercial developers must amortize costs over a large number of sales, but most consumers do not need spoofing protection. It’s a safe bet that Iranian agents aren’t interested in frustrating the efforts of U.S. motorists to find trendy new restaurants or drive their children to baseball games.
For those like Schofield who have deep pockets and face real risks, at least one manufacturer already sells a two-antenna receiver that could easily be upgraded to include direction-of-arrival algorithms. That manufacturer might soon be able to market a spoofing-resistant product on the order of $10,000 per unit. Operators of commercial airliners, large ships, and automated stock traders should be willing to pay that kind of money to lock the barn without even knowing whether horse thieves lurk in the neighborhood.
In the meantime, the good news for Schofield is that in order to pull off a spoof, an attacker must be close enough to the target to determine its precise location, log the GPS satellites that the target sees, and transmit false signals to it on a direct line of sight. Fortunately, no vessels beyond the
White Rose’s horizon could have executed this hack.
All of this work is just one piece of the larger challenge that faked physical signals pose to cyberphysical security. Might a hacker send a false radar signal to the automatic braking system of a high-end car and bring it screeching to a halt on a packed freeway? The possibilities are significant, growing, and alarming. We think the red-team/blue-team development strategy, in which the red team attacks a system and the blue team defends it, could be useful to others leading missions that deal with sensor deception, as we have found it to be in our work. We will be rooting for the blue teams.