Aseiden 3D tulostus

Tulevaisuudessa huollon puolelta voi löytyä 3D printteri millä varusveijarille saadaan repaleiden korvaukseksi ehtaa kamaa napin painalluksella. Tiedän että ei ole aseesta kyse mutta pointti on että scifistä tuttu replikointi on nostamassa päätään entistä enemmän.

Clothes and technology share a surprisingly rich history. Mechanized textile production helped ignite the Industrial Revolution. Punch cards, which facilitated our interaction with computers for decades, were first developed in the 18th century to control textile looms. Which is to say, the idea that we might someday 3-D print our clothes isn’t nearly as wacky as it sounds.

Niin se homma etenee. En olisi uskonut lasin olevan yksi valettavista aineista tällä hetkellä, mutta nyt kun on niin kehityksen mennessä eteenpäin aseiden printtaus tulee entistä ajankohtaisemmaksi.
If you go by the Hype Cycle — Gartner’s annual tech-buzz assessment — then consumer 3D printing is about to tumble from the “peak of inflated expectations” into the “trough of disillusionment,” part of the coming five- to 10-year slog to the practical applications that await atop the “plateau of productivity.” But Larry “L.J.” Holmes, the principal investigator for materials and technology development in additive manufacturing at the U.S. Army Research Laboratory, (ARL) isn’t waiting around for that.

In a presentation last month at the Intelligence and National Security Alliance summit, Holmes sketched out a variety of potential uses for 3D printing for the military, ranging from intelligence to communications to terraforming the battlefield. Here are a few highlights.
The Russian defense industry has been using 3D printing technology to create prototype components for the T-14 main battle tank and the rest of the Armata family of combat vehicles. Eventually, Russian industry hopes to be able to build production standard tank components for the Armata and other armored vehicles.

3D printing has been implemented to speed up trial production,” Anton Ulrich, manager of the rapid prototyping lab at Electromashina, told

“When a designer develops new products, he uses CAD software to produce a 3D model. So, using a 3D printer, we can quickly turn those 3D models into prototype parts. Now there is no need to order a sample component, and then, realizing that it doesn’t fit, have to order a re-run and waste metal. Furthermore, it is possible to produce not just small elements of a part, but the whole assembly, evaluating its mechanical characteristics before production.”

In the near future, Electromashina — which is a division of armored vehicle manufacturer UralVagonZavod — expects to start producing 3D printed titanium parts that are several meters in length for use in armored vehicles. However, in the short term, those components will be used for prototypes rather than for production machines.
Siitä vain sitten jokainen reserviläinen suunnittelemaan omaa panssarivaunua! PERK:n lähtiessä voi tulostaa yhden kappaleen mukaansa ja katsoa, kuinka @baikal lunastaa "Lumileopardin" @panssarimiesten käyttöön ja iskee tiskille vastineeksi kokardin ja kulahtaneen kiinalaisen rynnäkkökiväärin.

Floating around the Internet are plans for a semi-automatic pistol constructed out of sheet metal. Like so many plans for 3D printed guns, it appears no one has actually built one of these pistols. It exists only as a technological construct, with diagrams you can photocopy, trace onto a few bits of metal, and presumably assemble into a gun. The only proof these parts can be turned into a gun-shaped object are a few random blog posts from two years ago showing a very ugly pistol spray painted matte black.

[Clinton Westwood] decided to take up the challenge of turning these plans into a real, working gun. He’s documented his efforts on YouTube and put a bunch of pictures up of the entire build process. The gun doesn’t work quite yet, but it almost does, and he’s doing this entirely in a garage shop, with tools anyone can pick up from Home Depot.

Most of the construction of this gun is simple enough – it’s just sheet metal, after all. The magazine was constructed by tracing the pattern onto a piece of metal, wrapping it around a mandrel, and welding it together. The side plates of the gun, again, were created with a jigsaw. Rifling the barrel – the thing that makes this gun both accurate and legal – required the construction of a few interesting tools. The rifling tool is just a piece of round bar that fits through the barrel. A small piece of a hacksaw blade was cut to fit inside this round bar, and the barrel was cut very slowly with a shop-built tool.

The finished result is something that looks like it came from the finest post-apocalyptic craftsman. A gun that looks cool is useless if it doesn’t work, and here the DIY pistol falls short. The spent casings don’t eject. It’s still a step up from the first build of this gun that was only rumored to fire blanks.

Recently, the world of gunsmithing has been inundated with 3D printed pistols that don’t work, and 3D printed guns that do work, but are somehow 200 years behind the state of the art. We’re happy to see some people are still building things with their hands, and hope [Clinton] can eventually get this gun to work.
Tämä kaveri teki AK:n vanhasta lapiosta


[Guy in a garage] has made a 3D printed gun that not only appears to fire in the direction pointed, it can also do it multiple times. Which, by the standard of 3D printed guns, is an astounding feat. He started with .22 rifle cartridges but has since upgraded and tested the gun with .357 rounds. The link above is a playlist which starts of with an in-depth explanation of the .22 version and moves through design iterations

A barrel liner is one way to repair a gun that has aged and is no longer shooting properly. Simply put, it is a long hardened metal tube with rifling on the inside. Some guns come out of the factory with one, and a gunsmith simply has to remove the old one and replace it. Other guns need to be bored out before a liner can be installed.

The metal liner surrounded by plastic offers enough mechanical strength for repeat firings without anyone losing a hand or an eye; though we’re not sure if we recommend firing any 3D printed gun as it’s still risky business. It’s basically like old stories of wrapping a cracked cannon in twine. The metal tries to expand out under the force of firing, but the twine, which would seem like a terrible material for cannon making, is good in tension and when wrapped tightly offers more than enough strength to hold it all together.

Jep jep. 3d-printattu muovi itsessään on monessa kohtaa vähän huono materiaali, mutta ominaisuudet paranevat kummasti jos sinne sijoittaa sopivia metalliosia sekaan. Itsellänikin on pöytälaatikossa ihan 3d-printtauksia varten kasa pultteja, muttereita ja alumiiniputkea, joita voi sopivasti epoksilla turautella kyytiin.

Mutta joo, eihän tuliase nyt kovin hankala rakennettava ole - onhan niitä rakenneltu jo keskiajalta lähtien. Periaatteessa riittää että on putki, kuula ja ruutia + joku kipinä. Se, että saat tarkan ja toimivan puoliautomaatin on sitten jo vähän hankalampi ;)
  • Tykkää
Reactions: ctg
Kohta printataan kentällä A-tarvikettakin.

Marines Conducting Tests with 3-D Printed Munitions

declined to specify which indirect fire system was employed in the experiment, but said this test, the first of its kind for the Marine Corps, revealed a promising result.

The munition, he said, proved more lethal than traditionally manufactured munitions. And testing showed it could be developed to further improve lethality or otherwise tailor the system to the mission.

we think we'll be able to tailor the blast and associated fragmentation to achieve specific effects for particular targets, heights, collateral damage, or even environmental considerations
Kohta printataan kentällä A-tarvikettakin.

Marines Conducting Tests with 3-D Printed Munitions

En tiedä kenttäoloista, mutta kun otetaan huomioon miten pieniä tilauksia esim. tykistön ammuksille tehdään ja miten harvoin, niin 3D printteri jota voi käyttää useampien ammusten tuotantoon, kuin perinteisemmät työkalut, voisi olla ihan hyvä idea. Siis, ei varmaankaan kannata tehdä uutta ammuksien tuotantolaitosta, jos useimmat tilaukset voidaan täyttää hieman hitaampaan tahtiin 3D printterillä ja jos joskus tarvittaisiin lisätä tuotantoa huomattavasti, niin sitten ostetaan kasa hyllystä löytyviä (no, ainakin melkein, tarvittaessa niitä voidaan muokata käyttöönsä) 3D printtereitä!

Ja tuossa testissä on varmaankin ollut kyse jonkin aseen taistelukärjestä. Eli tarkoittaisi sitä, että oikeilla laitteilla olisi mahdollista tuottaa vaikka PST-ohjukseen uusi taistelukärki joka on sopiva tilanteeseen. Eli ohjukselle voitaisiin tuottaa vaikka ontelokärki, sirpalekärki ja sitten vaikka kärki joka sisältää mahdollisimman paljon räjähdettä, mutta tuottaa minimaalisesti sirpaleita. Tai vaikka kovakärkinen räjähdekärki, jolla päästään seinästä läpi ennen räjähdystä.
konsepti todiste 3D printtauksesta käyttämällä robottia käsivartena ja ohjaamalla se hitsaamaan objektin kokoon


[Jeff Rodriguez] has been busy testing a feasible DIY method for rifling a barrel and has found some success using salt water, a power supply, wire, and 3D printed parts to create the grooves of rifling without the need for any moving parts or cutting tools. Salt water flows between the barrel’s inside surface and a 3D-printed piece that holds wires in a precise pattern. A current flows between the barrel and the wires (which do not actually touch the inside of the barrel) and material is eroded away as a result. 10-15 minutes later there are some promising looking grooves in the test piece thanks to his DIY process.

Rifled barrels have been common since at least the 19th century (although it was certainly an intensive process) and it still remains a job best left to industrial settings; anyone who needs a barrel today normally just purchases a rifled barrel blank from a manufacturer. No one makes their own unless they want to for some reason, but that’s exactly where [Jeff] is coming from. The process looks messy, but [Jeff] has had a lot of space to experiment with a variety of different methods to get different results.
Amerikassa taisi joku heppu saada linnaa,putkaa ja vankeutta, kun tulosti pyssyyn sopivia osia ja myi niitä.:cool:
Viimeksi muokattu:

A couple years ago, a program responsible for training workers on weapon removal, like land mines and grenades, utilized 3D printing kits as teaching aids. Around the same time, some clever kids developed a 3D printed stink grenade. But now, the US Army is introducing a 3D printed grenade launcher, complete with 3D printed grenades, that could revolutionize how soldiers are equipped for warfare. Aptly, the weapon was named RAMBO, which stands for Rapid Additively Manufactured Ballistics Ordnance, and is a modified version of the army’s existing M203 underslung grenade launcher, which can be used for firearms like the M4A1 carbine and the M16. A major difference is that all of RAMBO’s parts, except the springs and fasteners, were produced through additive manufacturing.
Three-dimensional printing is becoming more prevalent in the defense industry, as engineers explore the process to make parts for the most sophisticated U.S. weapons, such as intercontinental ballistic missiles.

But lesser-known projects have been in the works at a Tinker Air Force Base, Oklahoma, shop that has been producing parts for Air Force aircraft for at least two years.

In February, Lt. Gen. John Cooper, deputy chief of staff for logistics, engineering and force protection, asked audiences at an Air Force Association breakfast, “Can we find better ways to maintain these airplanes? Is there some new technology that can help us? Or some new repair processes?”

The 3-D printing process is one way to do that, he said.

The general cited a trip he took to Tinker where he saw members of the Oklahoma City Air Logistics Complex, one of the Air Force’s largest depot maintenance units, making a dashboard casing for a B-1B Lancer bomber.

“We’re responsible for all the maintenance, repair and overhaul of all components that come off the aircraft,” Col. Robert Jackson, commander 76th Commodities Maintenance Group, told in a recent interview. The CMXG is part of the Oklahoma City Air Logistics Complex.

Jackson said the team has a wide variety of things to maintain, including many parts that would require an expensive bulk buy when they really need only one or two. Examples include mic switch knobs, crew compartment panels, sun visor brackets, and armrests that total roughly 60 different plane parts across the B-1, B-2, B-52, E-3 and KC-135 airframes, among others.

Martin Williams, director of the 76th’s Reverse Engineering and Critical Tooling, or REACT, office, said the unit already uses 3-D printers in various sizes, but they want others with flexible technologies to support making parts that engineers haven’t necessarily thought of yet.

The Lancer dashboard — or standby compass cockpit panel, as officials called it — is something the unit is currently prototyping.

Even with larger items, which require more durable parts and aren’t suited to 3-D production, 3-D prototyping streamlines the process by experimenting with designs that will be manufactured later with metal, Jackson said.

“You’re using the 3-D printed technology in order to deliver a prototype that confirms form, fit and function … and then you can be confident of your repair solution or your new part, delivering that to the traditional, organic manufacturing [unit] that’s going to use multi-axis milling machines to cut metal into that part,” he said.

Jackson said Tinker stood up the 553rd Commodities Maintenance Squadron in December 2015 for that reason, dedicated specifically to organic manufacturing.

The in-house 3-D process is much faster than going back and forth with outside suppliers for parts. “Once you get the geometry, you can print it overnight and have it the next day,” said REACT engineer Nate Pitcovich.

To identify the geometry of the part and print it takes at most two days, officials explained.

“With diminishing sources of supply, the benefit for us is the flexibility and the agility to respond to a warfighter need,” added Eric Bartlow, director of engineering for the CMXG.

“The benefit is speed,” he said.

“That’s our bottom line,” Jackson agreed.
Jos on päässyt itse todistamaan slm-tekniikalla tehtyä metallitulostetta, niin ymmärtää (jos ymmärtää asetekniikkaa) että tulostamalla twhdyt aseet ovat ihan totaalista haavetta. Ihan perusmetallurgia tulee vastaan.
Jos on päässyt itse todistamaan slm-tekniikalla tehtyä metallitulostetta, niin ymmärtää (jos ymmärtää asetekniikkaa) että tulostamalla twhdyt aseet ovat ihan totaalista haavetta. Ihan perusmetallurgia tulee vastaan.
Onko tuolla tekniikalla mahdollista tehdä osia aseteräksestä? Seosmetallien olettaisi olevan vaikeita eri sulamispisteiden takia. Mitä itse olen noita metallitulosteita nähnyt on pinnanlaatu sellainen että ne olisi vielä koneistettava, toki tarvitsevat myös lämpökäsittelyn.
Materiaalikirjo on suuri, lähtien inconelista työkaluterästen kautta alumiineihin. Pulveri on todella kallista ja tulostin edellyttää atex-tilat johtuen siitä, että pulveri on niin hienoa. Kappaleidin pinnanlaatu on todellakin karkea, jos halutaan tarkkoja toleransseja, niin kappale on koneistettava.
Suurin ongelma on kuitenkin lämpö ja sen hallinta. Käytännössä tuossa tekniikassa sulatetaan metallipulveria laserilla, siitä johtuen kappaleisiin on tulostettava jäähdytysrivat tulostukset onnistumiseksi. Työn jälkeen ne koneistetaan/hiotaan pois. Lopputulos itsessään voi kärsiä lämmöstä johtuvista muodonmuutoksista ja esim työkaluteräkset on päästettävä jotta niiden lujuus olisi jotenkin edes tiedossa. Tällä hetkellä laitevalmistajat/pulverivalmistajat eivät lupaa mitään lujuuksia noille materiaaleille (eivät uskalla) vastuukysymyksistä johtuen.
Metallien tulostukselle on oma paikkansa, mutta se ei todellakaan ole vielä valmis juttu eikä ole vielä pitkään aikaan. Itse olen ollut mukana tulostinprojektissa jo tovin ja kyllä siinä on hype karissut pois. Tuotantotekniikkana kiinnostava ja antaa mahdollisuuden toteuttaa sellaista mitä koneistamalla ei voi tehdä....mutta kaukana siitä, että löytyisi joka koneistamosta tms.
Ai niin, on myös mahdollista tulostaa esim. Rst laatuja sekaisin, siis pinnoittaa kappale tai tehdä eri osat eri materiaaaleista. Se tosin vaatii aikamoisen käsityön nykyisillä laitteilla.

Ja niin, aseteräshän on käytännössä nuorrutusteräksen eri laatuja taikka lämpökäsiteltävää rosteria, ei mitään sen mystisempää,