Aseiden 3D tulostus

ctg

Ylipäällikkö
, the world's best-known online repository for 3D-printed gun files, went dark on Tuesday evening in the wake of a decision by a federal judge in Seattle, who granted a temporary restraining order hours earlier.

"If an injunction is not issued and the status quo alters at midnight tonight, the proliferation of these firearms will have many of the negative impacts on a state level that the federal government once feared on the international stage," US District Judge Robert Lasnik wrote in his order.

"Against this hardship is a delay in lifting regulatory restrictions to which Defense Distributed has been subject for over five years: the balance of hardships and the public interest tip sharply in plaintiffs’ favor."

The ruling came one day after eight states announced that they would try to prevent Defense Distributed, the Texas-based group behind DEFCAD, from publishing CAD files of firearms after a recent legal settlement with the US State Department.

But their efforts came days after Defense Distributed had already released files for 10 different firearms, most of which were downloaded thousands of times. On Monday, Ars downloaded four of the files, including designs for an AR-15 rifle. Earlier versions of the DEFCAD files remain available on both domestic and overseas sites, including The Pirate Bay, as they have for five years.
https://arstechnica.com/tech-policy/2018/08/3d-printed-gun-website-yanks-cad-files-after-federal-judicial-order/
 

ctg

Ylipäällikkö

“Ghost Gunner is a general purpose CNC mill built upon the Ardunio micro-controller.

GG2 takes it name from its second-generation, custom motion-control board, which allows it to operate as a standard CNC machine. GG2 accepts g-code from most CAM post-processors.

GG2 unibody spindles are of stainless steel construction with the ER-11 collet system integrated in the shaft. They have increased radial rigidity, precision bearing diameters, and a 10x reduced initial runout specification.”
 

elso

Kenraali
Joo turhaa vouhotusta 3D tulostamisesta, taitaa vielä mennä tovi ennenkuin kelvollinen Glokki putoaa tulostimesta pöydälle valmiina käyttöön....
Ei vielä kelvollinen, mutta ei tästä nyt välttämättä niin pitkä matka siihen ole (.357 + nylonpiippu metallilinerilla):

 

ctg

Ylipäällikkö
Väittäisin että tarvittaessa käyttäjä voi printata kaikki tarvitsemansa osat ja jopa ampua, mutta hänen on oltava tietoinen että jossain vaiheessa ko vehje hajoaa. Pienillä metalliosilla käyttöikää saa kasvatettua hieman joten paras käyttökohde 3d printetterille on nopea protoilu ja hätäkorjaukset.

 

proileri

Eversti
On nuo jenkit kaiken keksiviä :D Ei voi muuta kuin hekotella näin koneistustaustalla
Jep jep. Tuossa taisi olla ajatuksena, että Jenkeissä 80% valmiiksi jyrsittyjä laatikoita saa myydä ei-toimivina osina ilman sarjanumeroa. Tuo vekotin on suunniteltu siihen, että se työstää viimeiset 20% - fiksua siinä on se, että kaikki on valmiiksi ohjelmoitu ja jopa kiinnityspisteet ovat valmiina sisällä, kirjaimellisesti laitat esityöstetyn laatikon paikalleen ja painat yhtä nappia. Alumiini/polymeerilaatikko ja kevyt pintatyöstö, niin voi käyttää kevytrakenteista "dremel-jyrsintä" viimeistelyyn.

Tämähän 80% idea ei ole mitenkään uusi. Käsittääkseni jenkeissä on vuosikausia saanut samanlaisia rakennussarjoja, mitkä on kirjamellisesti suunniteltu siihen että saat autotallissa käsiporalla, rautasahalla ja viilalla hinkattua viimeiset 20% pois, kun leikkaat ylimääräiset palaset valmiiksi merkatuista katkaisukohdista irti.

Tämä on myös mielestäni suurin riski 3d-tulostimien kanssa, eli että porukka alkaa myymään epämääräisiä metalliosasarjoja, joista saa sopivasti tulostettujen palikoiden kanssa yhdistelemällä kierrettyä luvanvaraisten aseenosien ostosäännöt. Viranomaiset varmaan saavat kiellettyä ne, mutta ennen kuin kielto pamahtaa niin sarjoja voi liikkua kohtuudella rajojen yli, saati sitten pimeillä markkinoilla.
 
Viimeksi muokattu:

elso

Kenraali
Väittäisin että tarvittaessa käyttäjä voi printata kaikki tarvitsemansa osat ja jopa ampua, mutta hänen on oltava tietoinen että jossain vaiheessa ko vehje hajoaa. Pienillä metalliosilla käyttöikää saa kasvatettua hieman joten paras käyttökohde 3d printetterille on nopea protoilu ja hätäkorjaukset.

Väitän, että jo metallisen sisäpiipun asennus varmistaa sen, että aseen käyttöikä kasvaa dramaattisesti. Tämä siis jos myös printtimateriaaleja on vähän mietitty etukäteen. Esim näin:

Aseen runko: PET-G tai ASA jos UV-säteilyn kesto on ehdoton kriteeri.
Piippu: Nylon (Taulman, Matterhackers, ...)
Piipun lineri: teräs (eli tätä ei printata, vaan ostetaan ulkoa)

Kestävyyttä voi tietysti optimoida edelleen miettimällä mm. panoksen latausta, seinämävahvuuksia, muovifillin kuvioita (täysin solidi muovirakenne on turhake), printtaussuuntaa, rungon geometriaa, kuituvahvikkeita, ...
 
Viimeksi muokattu:

Woodsman

Kenraali
Lahjoittaja
Jep jep. Tuossa taisi olla ajatuksena, että Jenkeissä 80% valmiiksi jyrsittyjä laatikoita saa myydä ei-toimivina osina ilman sarjanumeroa. Tuo vekotin on suunniteltu siihen, että se työstää viimeiset 20% - fiksua siinä on se, että kaikki on valmiiksi ohjelmoitu ja jopa kiinnityspisteet ovat valmiina sisällä, kirjaimellisesti laitat esityöstetyn laatikon paikalleen ja painat yhtä nappia. Alumiini/polymeerilaatikko ja kevyt pintatyöstö, niin voi käyttää kevytrakenteista "dremel-jyrsintä" viimeistelyyn.

Tämähän 80% idea ei ole mitenkään uusi. Käsittääkseni jenkeissä on vuosikausia saanut samanlaisia rakennussarjoja, mitkä on kirjamellisesti suunniteltu siihen että saat autotallissa käsiporalla, rautasahalla ja viilalla hinkattua viimeiset 20% pois, kun leikkaat ylimääräiset palaset valmiiksi merkatuista katkaisukohdista irti.

Tämä on myös mielestäni suurin riski 3d-tulostimien kanssa, eli että porukka alkaa myymään epämääräisiä metalliosasarjoja, joista saa sopivasti tulostettujen palikoiden kanssa yhdistelemällä kierrettyä luvanvaraisten aseenosien ostosäännöt. Viranomaiset varmaan saavat kiellettyä ne, mutta ennen kuin kielto pamahtaa niin sarjoja voi liikkua kohtuudella rajojen yli, saati sitten pimeillä markkinoilla.
Itse en juuri noita tulostimia pidä ongelmana, niillä voi tehdä sellaisia "saturdaynight specialeja", että muutamalla laukauksella ampuja kärsii enemmän. Aseiden valmistaminen vaikka autotallissa, käytetyllä, halvalla työstökoneella on paljon "vaarallisempaa" yhteiskunnan kannalta, silloin pikkasen asioista ymmärtävä voi tehtailla jo ihan kunnollisen toimivia aseita. Esim vanhanmallin dekoaseen entraaminen toimivaksi oli liiankin helppoa.
 

ctg

Ylipäällikkö
Yhdysvalloissa on kiistelty siitä, voidaanko aseiden 3D-tulostamisen mahdollistavia malleja levittää internetissä. Mallien julkistamista on lykätty oikeuskäsittelyn ajaksi.

3D-tulostamiseen perehtyneen Aalto-yliopiston professorin mukaan aseeseen tarvitaan todennäköisesti metallisia osia ja siksi tulostin on kallis. Ase täytyy lisäksi osata viimeistellä tulostamisen jälkeen, mihin tarvitaan ammattilaista.

– Uskon, että tulostettu ase tilattaisiin jostakin yrityksestä, ja siten toiminta olisi jollakin tavalla säänneltyä, sanoi tulevaisuuden tuotantomenetelmien professori Jouni Partanen Yle Radio 1:n Ykkösaamussa.

Hänen mukaansa jos haluaa hyvän aseen, on helpompia tapoja kuin tulostaa se itse.

Väärinkäytökset todennäköisempiä tuotteiden kopioinnissa
Jouni Partasen mielestä 3D-tekniikan yleistyessä bisnekseen ja muotoiluun liittyy paljon suurempia uhkakuvia kuin aseiden tulostukseen.

– Tuotteiden kopionti on paljon helpompaa kuin aiemmin, mallit ja tuotetiedot liikkuvat digitaalisesti. Yritämme luoda ymmärrystä siitä, minkälaista lainsäädäntöä tarvitaan 3D-ajalla, hän kuvasi.

Tällä hetkellä eniten esillä ovat 3D-teknologian suomat mahdollisuudet lentokoneteollisuudessa.

– Kun turhaa materiaalia ei käytetä, ei tule turhaa painoa. Tulevaisuudessa pystytään tekemään jopa biologista materiaalia jäljitteleviä osia, Partanen ennakoi.

Nämä materiaalit ovat mahdollisimman kevyitä, jolloin myös polttoaineen kulutus vähenee.
https://yle.fi/uutiset/3-10355338
 

MeriTJ

Eversti
Lahjoittaja
Aseita, metallisia ja kohtuudella ilmeisesti toimiviakin kun osataan esim Pakistanissa tehdä käytännössä sähköttömissä autotalliolosuhteissa niin en itse ymmärrä tätä vouhkaamisen määrää tässä 3D printteriasiassa. Laadukkaan aseen tekeminen taas vaatii laatua niin materiaaleista, työstökoneista kuin suunnittelijalta tai rakentajaltakin niin se taas ei tuossa asiassa muutu mihinkään. Tämä on mielestäni pitkälti tällainen enemmän nettiaikakauden jonninjoutava mediahybris kuin mikään suuri mullistus faktisesti.
 

Woodsman

Kenraali
Lahjoittaja
Aseita, metallisia ja kohtuudella ilmeisesti toimiviakin kun osataan esim Pakistanissa tehdä käytännössä sähköttömissä autotalliolosuhteissa niin en itse ymmärrä tätä vouhkaamisen määrää tässä 3D printteriasiassa. Laadukkaan aseen tekeminen taas vaatii laatua niin materiaaleista, työstökoneista kuin suunnittelijalta tai rakentajaltakin niin se taas ei tuossa asiassa muutu mihinkään. Tämä on mielestäni pitkälti tällainen enemmän nettiaikakauden jonninjoutava mediahybris kuin mikään suuri mullistus faktisesti.
Jep, Pakistanilaiset ja Afganistanilaiset asesepät on nikkaroinut esim ihan toimivia AK-47:ja mallin pohjilta. Ja niillä ei tosiaan ole kummosia työkaluja, hyvä jos sähköporakone löytyy. Siellä on perinteet tuollaiselle työlle jo 1800-luvulta saakka, kopioivat brittien aseita, sen jälkeen sitten aina tarpeen mukaan, en ihmettelisi vaikka siellä syntyisi nyt AR-15 kopioita.
 

ctg

Ylipäällikkö
Attorneys from 19 states and the District of Columbia will ask a judge to continue an order forbidding the release of 3D-printed gun files on Tuesday morning at 9:00am Pacific Time in federal court in Seattle.

Strangely, the lawsuit, State of Washington et al. v. United States Department of State et al, seems to ignore the fact that the files are already available on numerous sites, including Github, The Pirate Bay, and more. These files have circulated online since their original publication back in 2013. (Recently, new mirrors of the files have begun to pop up: here's one, and here's another.)

Lawyers representing both the Department of State and Defense Distributed argue that their already-approved legal settlement should go forward and that DEFCAD should be allowed to re-publish its 10 firearm CAD files.

Defense Distributed is the Texas-based company that has been involved in a years-long lawsuit with the Department of State over publication of those files and making them available to foreigners. The company runs DEFCAD, perhaps the best-known online repository of gun files.

After a surprising June 2018 settlement with the Department of Justice seemingly ended a five-year legal battle with the Department of State, DEFCAD reposted files, which officially had been removed, on July 27, days earlier than it had initially said that it would restore them.

The feds essentially agreed to change the relevant export laws. Defense Distributed would be allowed to publish, the DOJ would pay $40,000 of DD's legal fees, and the case would be over. The Second Amendment Foundation announced the settlement on July 10.

By July 30, Washington Attorney General Bob Ferguson led a group of states in an effort to seek their legal removal.

A day later, US District Judge Robert Lasnik granted a "temporary restraining order" (TRO) preventing Defense Distributed from publishing its 10 firearms files. DEFCAD complied with the order.
https://arstechnica.com/tech-policy/2018/08/3d-printed-gun-activists-set-to-face-numerous-us-states-in-court/

"If the Design Files and others like them have been freely available for years, it is unlikely that the harms warned of by the states will materialize when Defense Distributed republishes the designs," writes Venkat Balasubramani, an attorney representing the EFF.

"There is no logical reason why imminent, inevitable harm would result from publication by Defense Distributed, or anyone else, when it has not occurred in the past seven years. The First Amendment does not permit speech to be suppressed in these circumstances."
 

ctg

Ylipäällikkö
Used to produce three-dimensional objects of almost any type, across a range of industries, including healthcare, aviation and engineering, 3D printed materials have come of age during the last decade. Research published in the journal Materials Today demonstrates a new approach to 3D printing to fuse metallic filaments made from metallic glass into metallic objects.

Jan Schroers, Professor of Mechanical Engineering and Materials Science at Yale University and Desktop Metal, Inc., in Burlington, Massachusetts, USA, along with colleagues point out that 3D printing of thermoplastics is highly advanced, but the 3D printing of metals is still challenging and limited. The reason being that metals generally don't exist in a state that they can be readily extruded.

"We have shown theoretically in this work that we can use a range of other bulk metallic glasses and are working on making the process more practical- and commercially-usable to make 3D printing of metals as easy and practical as the 3D printing of thermoplastics," said Prof. Schroers.

Unlike conventional metals, bulk metallic glasses (BMGs) have a super-cooled liquid region in their thermodynamic profile and are able to undergo continuous softening upon heating--a phenomenon that is present in thermoplastics, but not conventional metals. Prof. Schroers and colleagues have thus shown that BMGs can be used in 3D printing to generate solid, high-strength metal components under ambient conditions of the kind used in thermoplastic 3D printing.

The new work could side-step the obvious compromises in choosing thermoplastic components over metal components, or vice-versa, for a range of materials and engineering applications.

Additive manufacturing of metal components has been developed previously, where a powder bed fusion process is used, however this exploits a highly-localized heating source, and then solidification of a powdered metal shaped into the desired structure. This approach is costly and complicated and requires unwieldy support structures that are not distorted by the high temperatures of the fabrication process.

The approach taken by Prof. Schroers and colleagues simplifies additive manufacturing of metallic components by exploiting the unique-amongst-metals softening behavior of BMGs. Paired with this plastic like characteristics are high strength and elastic limits, high fracture toughness, and high corrosion resistance. The team has focused on a BMG made from zirconium, titanium, copper, nickel and beryllium, with alloy formula: Zr44Ti11Cu10Ni10Be25. This is a well-characterized and readily available BMG material.

The team used amorphous rods of 1 millimeter (mm) diameter and of 700mm length. An extrusion temperate of 460 degrees Celsius is used and an extrusion force of 10 to 1,000 Newtons to force the softened fibers through a 0.5mm diameter nozzle.

The fibers are then extruded into a 400 C stainless steel mesh wherein crystallization does not occur until at least a day has passed, before a robotically controlled extrusion can be carried out to create the desired object.

When asked what challenges remain toward making BMG 3D printing a wide-spread technique, Prof. Schroers added, "In order to widely use BMG 3D printing, practical BMG feedstock available for a broad range of BMGs has to be made available. To use the fused filament fabrication commercially, layer-to-layer bonding has to be more reliable and consistent."
http://www.spacedaily.com/reports/At_last_a_simple_3D_printer_for_metal_999.html

https://doi.org/10.1016/j.mattod.2018.07.001
 

Leaderdog

Ylipäällikkö
Lahjoittaja
Ilmeisesti hivuttaudutaan ainavaan pidemmälle tässä 3D tulostamisessa, mutta vielä ei nappia painamalla toimivaa pyssyä tulostu.
 

elso

Kenraali
Ilmeisesti hivuttaudutaan ainavaan pidemmälle tässä 3D tulostamisessa, mutta vielä ei nappia painamalla toimivaa pyssyä tulostu.
Ei synny ei. Kyllä se vaatii ymmärrystä ennen kaikkea 3D-printtausprosessista. Suunnitelmat (.stl -tiedostot) löytyy toki netistä, eikä niitä ole pakko kovin paljoa pähkäillä, mutta oleelliset kestävyyteen liittyvät seikat olisi hyvä tunnistaa turvallisuusnäkökohtien vuoksi.

Kyllä muoviaseen tai muoviaseen johon on hankittu metallinen sisäpiippu valmistus on kumminkin helpompaa kuin alkaa väsäämään asetta rälläkällä ja muilla käsityökaluilla. "Jotenkuten toimivaa" (printtaaja tunnistaa tekeleensä heikkoudet) syntyy paljon nopeammin 3D-printtaamalla.

Tässä koko aseprinttausvyyhdissä punainen lanka lienee pitkälti siinä, että siviilien aseen hallussapidon rajoittaminen on käymässä pykälä pykälältä hankalammaksi jos jokainen voi leipoa aseen halutessaan kotonansa suht' nopealla aikataululla.

Pohdin itsekseni, että olisiko allekirjoittaneella syitä lähteä printtaamaan ampuma-asetta. Ainoa syy, jossa saattaisi asiaa vakavasti harkita olisi sotatila tai selkeästi sitä kohti meneminen JA jos kaupallisesti valmistettua ampuma-asetta ei olisi saatavilla ja sitä olisi vaikea hankkia mistään.
 
Viimeksi muokattu:

ctg

Ylipäällikkö
Last week I went to the International Manufacturing Technology Show (IMTS) and it was incredible. This is a toy store for machinists and showcases the best of industrial automation. But one of the coolest trends I found at the show are all the techniques used to 3D print in metal. The best part is that many of the huge machines on display are actually running!

It’s probably better to refer to this as additive manufacturing, because the actual methods can be significantly different from your 3D printer. Below you’ll find examples of three different approaches to this process. I had a great interview with a company doing actual 3D printing in metal using a nozzle-based delivery often called cladding. There’s a demo video of powder layer printing using lasers. And a technique that uses binders as an intermediary step toward the final metal part. Let’s take a look!
https://hackaday.com/2018/09/17/3d-printing-in-metal-the-laser-and-metal-powder-printers-we-saw-at-imts/
 

ctg

Ylipäällikkö
No nyt on tieteellä todistettu että 3D printereillä on sormenjälkensä.

Like fingerprints, no 3D printer is exactly the same.

That's the takeaway from a new University at Buffalo-led study that describes what's believed to be the first accurate method for tracing a 3D-printed object to the machine it came from.
The advancement, which the research team calls "PrinTracker," could ultimately help law enforcement and intelligence agencies track the origin of 3D-printed guns, counterfeit products and other goods.

"3D printing has many wonderful uses, but it's also a counterfeiter's dream. Even more concerning, it has the potential to make firearms more readily available to people who are not allowed to possess them," says the study's lead author Wenyao Xu, PhD, associate professor of computer science and engineering in UB's School of Engineering and Applied Sciences.

The study will be presented in Toronto at the Association for Computing Machinery's Conference on Computer and Communications Security, which runs from Oct. 15-19. It includes coauthors from Rutgers University and Northeastern University.

To understand the method, it's helpful to know how 3D printers work. Like a common inkjet printer, 3D printers move back-and-forth while "printing" an object. Instead of ink, a nozzle discharges a filament, such as plastic, in layers until a three-dimensional object forms.

Each layer of a 3D-printed object contains tiny wrinkles -- usually measured in submillimeters -- called in-fill patterns. These patterns are supposed to be uniform. However, the printer's model type, filament, nozzle size and other factors cause slight imperfections in the patterns. The result is an object that does not match its design plan.

For example, the printer is ordered to create an object with half-millimeter in-fill patterns. But the actual object has patterns that vary 5 to 10 percent from the design plan. Like a fingerprint to a person, these patterns are unique and repeatable. As a result, they can be traced back to the 3D printer.

"3D printers are built to be the same. But there are slight variations in their hardware created during the manufacturing process that lead to unique, inevitable and unchangeable patterns in every object they print," Xu says.

To test PrinTracker, the research team created five door keys each from 14 common 3D printers -- 10 fused deposition modeling (FDM) printers and four stereolithography (SLA) printers.

With a common scanner, the researchers created digital images of each key. From there, they enhanced and filtered each image, identifying elements of the in-fill pattern. They then developed an algorithm to align and calculate the variations of each key to verify the authenticity of the fingerprint.

Having created a fingerprint database of the 14 3D printers, the researchers were able to match the key to its printer 99.8 percent of the time. They ran a separate series of tests 10 months later to determine if additional use of the printers would affect PrinTracker's ability to match objects to their machine of origin. The results were the same.

The team also ran experiments involving keys damaged in various ways to obscure their identity. PrinTracker was 92 percent accurate in these tests.

Xu likens the technology to the ability to identify the source of paper documents, a practice used by law enforcement agencies, printer companies and other organizations for decades. While the experiments did not involve counterfeit goods or firearms, Xu says PrinTracker can be used to trace any 3D-printed object to its printer.

"We've demonstrated that PrinTracker is an effective, robust and reliable way that law enforcement agencies, as well as businesses concerned about intellectual property, can trace the origin of 3D-printed goods," Xu says.
https://www.sciencedaily.com/releases/2018/10/181018151044.htm
 
Top