STEALTH

Hmm.

Ensin kirjoitit näin:



Ja sitten näin.



Vaikuttaa, että ainakin tämä alla oleva kohta tekstistä jäi huomaamatta :)

Harkitsin jo etukäteen, että pitäisikö se vielä värjätä punaisella. Se tuntui kuitenkin turhalta alleviivaamiselta.



Sanoisin, että olen lähes täydellisesti samaa mieltä noista detaljeista.

Mutta tässä on varmaan silti hyvä arvioida ensin tuota ylätason juttua, ja voidaan sitten palata detskuihin tarpeen mukaan? Olen kyllä myös sitä mieltä, että jos noiden detskujen tarkoitus on sanoa, että mistään ei voi sanoa mitään, niin sitten voidaan koko foorumin keskustelu lopettaa.

Kiinnostaisi kuulla vastauksia/kommentteja seuraaviin.
  1. Mikä on sitten"stealthin" / "häiveen" tjms. mitä lie määritelmä ja merkitys? Se jäi nyt epäselväksi.
  2. Miten kommentoisit sitä alkuperäistä lainattua tekstin pätkää?
Laitetaan tämä vielä alkuperäistä tekstin pätkää edeltävä teksti kontekstiksi.

Piru asuu yksityiskohdissa.

Määrittelystä näin muutaman kaljan jälkeen (saa keksiä paremman):

Häivettä on ne laitteen muotoon, materiaaliin ja väritykseen liittyvät passiiviset ratkaisut jolla pyritään saavuttamaan etu Kill Chain - kilpailussa heikentämällä vastustajan sensorien suorituskykyä.

Alkuperäistä pätkää kommentoisin että vaihtoehtoja on muitakin kuin vain häive, elso tai ylivoimainen tulivoima, esimerkiksi kinemaattinen ylivoima. Mitä tulee tuohon lentokorkeusasiaan, vaikuttaisi siltä että EF on siinä vahvimmilla. Olen myös varma että ihan kaikilla HX-kandidaateilla voidaan operoida kaikissa lentokorkeuksissa eteläisellä rantamaalla.
 
Piru asuu yksityiskohdissa.

Määrittelystä näin muutaman kaljan jälkeen (saa keksiä paremman):

Häivettä on ne laitteen muotoon, materiaaliin ja väritykseen liittyvät passiiviset ratkaisut jolla pyritään saavuttamaan etu Kill Chain - kilpailussa heikentämällä vastustajan sensorien suorituskykyä.

Alkuperäistä pätkää kommentoisin että vaihtoehtoja on muitakin kuin vain häive, elso tai ylivoimainen tulivoima, esimerkiksi kinemaattinen ylivoima. Mitä tulee tuohon lentokorkeusasiaan, vaikuttaisi siltä että EF on siinä vahvimmilla. Olen myös varma että ihan kaikilla HX-kandidaateilla voidaan operoida kaikissa lentokorkeuksissa eteläisellä rantamaalla.

Aivan. No tässä on nyt sellainen asia, että olemme stealthin ja häiveen määritelmästä hiukan eri mieltä.

Ajattelet tätä asiaa selkeästi F-35:den näkökulmasta. Se on totta, että F-35:den häive on suunniteltu nimenomaan 10 Ghz (X-band) tutkia vastaan, joita käytetään esim. pienemmissä tulenjohtotutkissa, hävittäjätutkissa ja ohjusten hakupäissä. Ja tarkoitat sitä, että F-35 kyllä havaitaan alhaisemman taajuuden tutkilla, joita vastaan F-35:den häive ei toimi, mutta tulenkäyttö on vaikeaa X-band stealthin ansiosta.

Itse käyttäisin stealthista / häiveestä ihan yksinkertaisesti pyrkimystä heikentää ja vaikeuttaa havaittavuutta tutkissa. Tämä ei siis ole mitenkään riippuvainen aallonpituudesta.

Yksi hyvä käytännön esimerkki asian ymmärtämiseksi on esim. B-21. Sen idea on, ettei sitä havaita myöskään alhaisemman taajuuden tutkilla kuin X-band.

Edelleen, jos sitten palataan tuohon tekstinpätkään, niin se ensimmäinen tekstinpätkä, siinä selkeästi viitattiin X-band-taajuuksiin. (Vain F-35 pystyy lentämään alueella, jossa se havaitaan kyllä alhaisen taajuusalueen tutkilla, mutta siihen ei pystytä kohdistamaan tulivaikutusta, vs. muut koneet, jotka havaitaan alhaisen taajuuden tutkilla, ja jotka havaitaan myös X-alueen tutkilla, ja joihin voidaan kohdistaa tulivaikutusta).

Jos edelleen nyt sitten tutkatekniikka kehittyy niin, että se havaitaan myös X-taajuudella, kuten sitten seuraavassa tekstissä viitattiin, ei toimi myöskään stealth käyttämässäsi X-band kill-chain merkityksessä. Tästä sitten seuraa kehitys, jota rautalangasta väänsin.
 
Aivan. No tässä on nyt sellainen asia, että olemme stealthin ja häiveen määritelmästä hiukan eri mieltä.

Ajattelet tätä asiaa selkeästi F-35:den näkökulmasta. Se on totta, että F-35:den häive on suunniteltu nimenomaan 10 Ghz (X-band) tutkia vastaan, joita käytetään esim. pienemmissä tulenjohtotutkissa, hävittäjätutkissa ja ohjusten hakupäissä. Ja tarkoitat sitä, että F-35 kyllä havaitaan alhaisemman taajuuden tutkilla, joita vastaan F-35:den häive ei toimi, mutta tulenkäyttö on vaikeaa X-band stealthin ansiosta.

Itse käyttäisin stealthista / häiveestä ihan yksinkertaisesti pyrkimystä heikentää ja vaikeuttaa havaittavuutta tutkissa. Tämä ei siis ole mitenkään riippuvainen aallonpituudesta.

Yksi hyvä käytännön esimerkki asian ymmärtämiseksi on esim. B-21. Sen idea on, ettei sitä havaita myöskään alhaisemman taajuuden tutkilla kuin X-band.

Edelleen, jos sitten palataan tuohon tekstinpätkään, niin se ensimmäinen tekstinpätkä, siinä selkeästi viitattiin X-band-taajuuksiin. (Vain F-35 pystyy lentämään alueella, jossa se havaitaan kyllä alhaisen taajuusalueen tutkilla, mutta siihen ei pystytä kohdistamaan tulivaikutusta, vs. muut koneet, jotka havaitaan alhaisen taajuuden tutkilla, ja jotka havaitaan myös X-alueen tutkilla, ja joihin voidaan kohdistaa tulivaikutusta).

Jos edelleen nyt sitten tutkatekniikka kehittyy niin, että se havaitaan myös X-taajuudella, kuten sitten seuraavassa tekstissä viitattiin, ei toimi myöskään stealth käyttämässäsi X-band kill-chain merkityksessä. Tästä sitten seuraa kehitys, jota rautalangasta väänsin.

Hmm. Ollaan sitten määritelmästä eri mieltä. Sinun määritelmäsi ongelmaksi näen ettei se kata toimenpiteitä esim IR-alueella, mikä on tänä päivänä varsin relevantti.

Mitä tulee muuhun osioon, kehotan olemaan takertumatta tuohon havaittavuuteen. On kovin eri asia saada sensorilla havainto kuin kyetä seuraamaan ja osoittamaan maali aseelle niin että sitä vastaan voi käyttää tulta. On siis "havaintoja" ja "havaintoja".
 
Hmm. Ollaan sitten määritelmästä eri mieltä. Sinun määritelmäsi ongelmaksi näen ettei se kata toimenpiteitä esim IR-alueella, mikä on tänä päivänä varsin relevantti.

Meinasin jo kirjoittaa tuossa aikaisemmin, että on selkeämpää keskittyä keskustelussa tutka-stealthiin :)

Koska siitä oli alunperin kyse, ja sitä tyypillisesti tarkoitetaan, kun stealthista ja häiveestä foorumilla keskustellaan.

Mutta, se pitää kyllä ilman muuta paikkansa, että IR on oleellinen osa tätä monimutkaista maailmaa. Ja sitä vastaan kunnollisen häiveen saaminen on tosiaan huomattavasti vaikeampaa.

Mitä tulee muuhun osioon, kehotan olemaan takertumatta tuohon havaittavuuteen. On kovin eri asia saada sensorilla havainto kuin kyetä seuraamaan ja osoittamaan maali aseelle niin että sitä vastaan voi käyttää tulta. On siis "havaintoja" ja "havaintoja".

Aivan. Tämäkin on hyvä tarkennus. Häiveen yhteydessä yleensä puhutaan alhaisesta havaittavuudesta. Mutta vähintään yhtä oleellista on puhua alhaisesta seurattavuudesta. Tarkoitin siis weapons-grade havaintoa. Voidaan puhua sitten vaikka termeistä seuranta / lukitus.
 
Laitetaanpa tänne, kun ollut juuri puhe.

Raptorit olivat stealthin ansiosta täysin voittamattomia. Ampuivat esim. parhaimmillaan alas 12 F-15 Eaglea runsaassa kahdessa minuutissa.

Se on sitä epälineaarisuutta.

Kohdasta 39 min alkaen. Sitten on vähän taukoa, mutta jatkuu kuitenkin relevanttina noin kohtaan 48 min asti.

Video on muutenkin varsin kiinnostava, erityisesti Serbian sodan osalta. Ohjusten Pk ja IFF jne tärkeitä asioita.

 
Laitetaanpa tänne, kun ollut juuri puhe.

Raptorit olivat stealthin ansiosta täysin voittamattomia. Ampuivat esim. parhaimmillaan alas 12 F-15 Eaglea runsaassa kahdessa minuutissa.

Se on sitä epälineaarisuutta.

Kohdasta 39 min alkaen. Sitten on vähän taukoa, mutta jatkuu kuitenkin relevanttina noin kohtaan 48 min asti.

Video on muutenkin varsin kiinnostava, erityisesti Serbian sodan osalta. Ohjusten Pk ja IFF jne tärkeitä asioita.


Tuosta jäi jotenkin sellainen kuva, että kuskilla olisi ollut Raptoriin liittyen vielä vaikka mitä kerrottavaa. Taisi vaan tulla salassapitomääräykset vastaan ja aihetta käsiteltiin melko yleisluontoisesti. Kyllähän tuo aika hätkähdyttävä kill ratio on. Ja ilmeisen samansuuntainen se on F-35:lla, jos siis uskomme julkisuuteen annettuihin tietoihin konetyypin suorituksista Red Flag -harjoituksessa.
 
En ota kantaa siihen onko harjoitus vain joku mainostemppu tai ovatko tiedot oikeellisia, mutta eihän tuo sinänsä ihme olisi kun ajatellaan että stealth vs. vanhemman sukupolven koneet taistelevat keskenään.

Yksinkertaisesti sitä mitä ei voi nähdä, ei voi ampua alas. Ei siinä paljon auta vaikka miten foorumeilla väitellään että "Silti Venäläisillä koneilla (tai koneella x) on paremmat dog fighting ominaisuudet!!!".
 
F-22:n tehokkuuteen harjoituksissa on vaikuttanut häiveen lisäksi vähintään yhtä paljon LPI-tutkateknologia. Vanhempien koneiden tutkavaroittimet eivät yleensä havaitse sitä, joten F-22 -lentäjä voi pitää koko ajan tutkaa päällä ja hankkia erinomaisen taktisen kuvan siinä missä vanhemman koneen lentäjä joutuu mittaamaan tutkalla vain säästeliäästi välttyäkseen paljastumasta. Eräs lentäjä kuvasi F-22:lla lentämistä "kuin olisi Jumalan silmä taistelukentän yllä".

Siitä pysyykö LPI-tutkien etu uusia tutkavaroittimia vastaan esiintyy erilaisia mielipiteitä. Ainakin BAe väittää että F-35:n AN/ASQ-239 pystyisi havaitsemaan LPI-tutkia.
 
Tulevaisuuden tutkavaroitin ei vain havaitse ja anna varoitusta, vaan antaa täsmällisen pisteen kartalla mistä tutkasäteily oli lähtöisin. Sellaista kissahiiri-leikkiä tämä on, aina kehitetään jotain ja sitten kehitetään vastateknologiaa, kilpajuoksua.
 
Olennaista on ettei häive(kään) yksinään ole autuaaksi tekevä ominaisuus vaan kuten aina, lopputulos riippuu synergiasta. Mikään menestynyt hävittäjä ei ole nojautunut vain yhteen ominaisuuteen vaikka usein informatiivisesti köyhässä kirjallisuudessa niin esitetäänkin ("Zero oli ketterä", "P-47 oli kestävä" yms....).

Ajatuskokeena voi funtsia vaikka niin että mitä jos F-117:ään olisi asennettu APG-66 ja asekuiluista olisi voitu ampua AMRAAM-ohjuksia. Olisiko tehnyt harkoissa samanlaista jälkeä kuin F-22? No ei, todennäköisesti kone olisi menestynyt melko surkeasti. Siksi USAF ei koskaan tämäntyyppistä edes yrittänyt.
 
Onhan se totta että jos vaikka Boeing 777:aan pultataan häive ja AMRAAM:t, ei se ole silti kovin menestyksekäs ilmataistelukone. Eihän se häive mikään autuaaksi tekevä ominaisuus ole.

Sen sijaan on totta että kaikki uudet koneet varmasti tulevaisuudessa tulevat olemaan häivekoneita. (täsmennetään vielä että sellaiset koneet, joiden ajatellaan joutuvan toimimaan vihollisen hävittäjiä vastaan ja IT:n vaikutuspiirissä).
 
https://www.businessregiongoteborg....l-nya-hojder-i-varldsledande-mikrovagskluster

Google translatella Erieye-ER suorituskyvystä:

"We've increased the reach by 70 or maybe 100 percent against the old goals. Former Russian airplanes, if you think of them as the old targets, you look at the double distance while these new stealth aircraft, which are only a tenth or a hundredth, are so big we can now see where we used to see the old goals of our previous generation of sensors, says Fredrik Wising.
 
Ensin näkyi lokki, nyt jo lokin paska. :poop:

Saapa nähdä miten tulee kauppaa. Toivottavasti on parempi tilanne markkinassa kuin esim. P-8:a vastaan muilla merivalvontakoneilla.
 
Viimeksi muokattu:
Aviation Weekin stealth-pätkä on näemmä kopioitu nettiin, joten kopioidaan tänne.

Tuossa käsitellään asiaa muuten aika hyvin eri puolilta, mutta siinä ei käsitellä ollenkaan monipaikkatutkaa.

Mutta alhaista taajuutta auttaa ymmärtämään muuten.

---


Turvaan, jos linkki kuolee.

Physics And Progress Of Low-Frequency Counterstealth Technology
Aug 25, 2016 Dan Katz | Aviation Week & Space Technology

The Radar Strikes Back

This is the second article in a series. Since the advent of stealth technology, claims have abounded about ways low-observable aircraft can be detected. Chief among these are radars that operate at lower frequencies than those stealth aircraft are designed to defeat. With digital electronics technology overcoming some of the performance limitations inherent in VHF and other low-frequency radars, can they render stealth obsolete?

To understand the current balance of stealth versus counter-stealth as the Lockheed Martin F-35 joins the F-22 in operational service requires a closer look at how radars work, at the effect of wavelength on radar reflection, and at the capabilities of advanced lower-frequency systems now being deployed.

http://aviationweek.com/site-files/.../uploads/2016/08/01/State_of_Stealth_LOgo.jpg

Lower-frequency radars are better for detecting stealth aircraft because of their longer wavelengths, which are inversely proportional to frequency (see table, Radar Band Frequencies and Wavelengths). Most fire-control radars operate in X-band (8-12 GHz), although some short-range systems use higher-frequency Ku-band (12-18 GHz). Search radars are typically S-band (2-4 GHz), for longer range. Some surface-to-air missile (SAM) systems use C-band (4-8 GHZ) for both search and fire-control, as a compromise between range and resolution. Long-range early warning radars typically operate in L-band (1-2 GHz) or lower and it is these frequencies that have counter-stealth properties. The reason lies in the behavior of radar waves as they reflect off structures, which can be divided into three regimes based on the size of the structure relative to the wavelength.

High-Frequency Scattering

A high-frequency regime (not to be confused with the HF radio band) applies when the structure is at least 10 times longer than the incident radar wave. In this regime, specular mechanisms dominate the radar, in other words the angle of reflection equals the angle of incidence, like billiard balls colliding. “Backscatter” – reflection towards the emitting radar – is reduced by angling surfaces so that they are rarely perpendicular to radars and suppressing the reflections from re-entrant structures such as engine intakes and antenna cavities with combinations of internal shaping, radar absorbent material (RAM) or frequency selective surfaces.

http://aviationweek.com/site-files/aviationweek.com/files/uploads/2016/08/23/DF-SOS-LOWF_1_table.jpg

In this regime, “surface wave” mechanisms are small contributors to RCS, but are still present. These are the electromagnetic waves created by the currents induced in a surface when radar energy strikes it. As these currents move back and forth across the surface, they emit electromagnetic energy known as “traveling waves.” If the wavelength is small relative to the surface, these waves are weak and their overlap will generate maximum backscatter when the radar signal is at grazing angles.

When these currents encounter discontinuities, such as the end of a surface, they abruptly change and emit “edge waves.” The waves from different edges interact constructively or destructively due to their phases. The result is they strengthen the reflection in the specular direction and create “sidelobes” – a fan of returns around the specular reflection which undulate rapidly and weaken as the angle deviates from the specular direction. The currents can also swing around to a structure’s back side, becoming “creeping waves” that shed energy incrementally and contribute to backscatter when they swing back toward the radar.

While small at high radar frequencies, surface waves still require attention on stealth aircraft. Aligning discontinuities to direct traveling waves towards angles of unavoidable specular return, such as the wing leading edge, can limit their impact at other angles. Designing airframe facets with non-perpendicular corners and so radars view them along their diagonals, at low angles and across from the facets’ smallest angles, limits the area of edge-wave emission. At high relative frequencies, surface waves can also be suppressed with RAM.

They can also be reduced by blending facets. The first stealth aircraft, the F-117, was designed with a computer program that could only predict reflections from flat surfaces, necessitating a fully faceted shape, but all later stealth aircraft use blended facets. Shapes composed of blended facets are more aerodynamic, but also allow currents to smoothly transition at their edges, reducing surface-wave emissions. Therefore, blended bodies have the potential for a lower RCS than fully faceted bodies. And blending the curves around an aircraft in a precise mathematical manner can reduce RCS around the azimuthal plane by an order of magnitude. The penalty is often a slight widening of the specular return at the curves, but in directions at which threat radars are less likely to be positioned. This was one of the great discoveries of the second generation of stealth technology.

The Resonance Region

As the radar wavelength grows, non-specular reflections intensify and specular reflections widen. For flat surfaces, traveling waves grow with the square of wavelength and their angle of peak backscatter rises with the square root of wavelength: at 1/10th the surface length, it is over 15 deg. Tip diffractions and edge waves from facets viewed diagonally also grow with the square of wavelength. Specular reflections from flat surfaces decrease with the square of the wavelength, but widen proportionally: at 1/10th the surface length, they are almost 6 deg. wide. In addition, most RAM types become less effective as wavelength increases. For all these reasons, stealth specialists say the RCS of a stealth aircraft grows approximately with the square of wavelength from the lowest frequency for which it was designed, and that above-mentioned effects become significant when the wavelength reaches about 1/10th the size of a structure.

http://aviationweek.com/site-files/...6/08/23/DF-SOS-LOWF_2_SpecularIntensity_0.jpg

But aircraft RCS does not necessarily grow linearly. As surface-wave effects grow, their phases can interfere constructively or destructively with specular reflections. This phenomenon is illustrated in simple form with a sphere (see figure below). As wavelength grows relative to the circumference, the creeping wave circling the sphere grows continuously, but its phase interference with the specular return varies. This causes the sphere’s RCS to undulate, with successively higher peaks corresponding to phase matches between the specular return and the strengthening creeping wave. This phenomenon is known as “Mie scattering” and this regime —where the wavelength is between one and 1/10th the size of the structure—is known as the “resonance region.” Maximum RCS is often reached when the wavelength reaches the approximate size of the structure.

Rayleigh Scattering

http://aviationweek.com/site-files/...oads/2016/08/23/DF-SOS-LOWF_3_Diffraction.jpg

Once the wavelength grows past this point, the specifics of target geometry cease to be important and only its general shape affects reflection. The radar wave is longer than the structure and pushes current from one side of it to the other as the field alternates, causing it to act like a dipole and emit electromagnetic waves in almost all directions. This phenomenon is known as “Rayleigh scattering.” At this point, the RCS for many shapes will then decrease with the fourth power of the wavelength.

Net Effects

These effects occur individually for every shape on an aircraft and their reflections interact with those of every other shape. Smaller shapes exhibit the behavior before larger ones, but also have a lower maximum RCS. The behavior can also vary with changes in aspect angle.

No RCS figures for fighters outside of X-band are publically available but the above phenomena make low-observable aircraft more detectable as shaping and most RAM become less effective. The sizes of wings and tails on fighter aircraft are on the order of one to several meters. This means these shapes might enter the resonance region in L-band and reach Rayleigh scattering in VHF, although the specific angle, frequency and geometry can still matter.

Lower-Frequency Systems

http://aviationweek.com/site-files/...loads/2016/08/23/DF-SOS-LOWF_4_Scattering.jpg

So why not build every radar for lower bands? Because they are less accurate at lower frequencies. Every antenna generates a beam pattern with a central cone called a main lobe within which most of its energy is emitted and reflected energy detected. The main lobe’s width depends on the ratio of the antenna’s aperture size to its wavelength. Longer wavelengths require bigger apertures, increasing cost and decreasing mobility, and even large antennas struggle to generate fire-control-level accuracy. Early in the Cold War, the Soviets developed the first mobile VHF systems, such as the P-12 “Spoon Rest,” but its accuracy was so poor that target handoff to higher-band fire-control radars was difficult. Fighter radars have been largely restricted to X-band due to the need to fit in small noses.

But with the advent of active, electronically scanned array (AESA) antennas and improvements to computers and signal processing, lower-band radars have become more accurate and their range has increased. The state-of-the-art ground-based VHF system is now Russia’s 55Zh6UME, produced by Nizhniy Novogorod Research Institute of Radio Engineering (NNiiRT). And the radar suite in Russia’s new Sukhoi T-50 fighter includes N036L-1-01 L-band AESA antennas in the wing leading edges. These could be integrated into Sukhoi’s Su-35 as well.

The 55Zh6UME may be able to detect stealth aircraft at far longer ranges than contemporary higher-band search radars. NNiiRT states a VHF detection range of 265 mi. for a 1m2 RCS target, albeit at the curious altitude of 98,000 ft. No reference range has been released for the N036L-1-01. L-band might put the wings and tails of the F-35 and F-22 in the upper resonance region and possibly generate greater returns from their engine intakes and certain small shapes. The N036L-1-01has a smaller aperture and likely less power than nose-mounted radars, but the advantages of L-band could be enough to detect stealth fighters farther away than the main radar.

From Detection to Engagement

Using lower frequencies can extend detection range against stealth aircraft, and provide early warning, but to engage them an adversary has to guide a missile accurately enough to put the target within the lethal radius of its warhead. The volume available inside missiles restricts onboard radars to higher C-, X- or Ku-band, so how to guide them?

One approach is to use VHF command terminal guidance. The idea is to link the 55Zh6UME search radar to the S-300/400 weapon system and use its data to direct the missiles all the way to their targets. According to data released by NNiiRT, however, the 55Zh6UME is not accurate enough for this. The manufacturer claims a root mean square error of 0.25 deg. in azimuth and elevation against a 1 m2 RCS target. This means for targets only 20 mi. away it could be off by more than 460 ft., and proportionally more for more distant targets. This is inadequate to guide a missile. As for the N036L-1-01, Sukhoi does not claim the T-50 can engage targets with it and, being restricted in height to the thickness of the wing, the system likely has poor elevation accuracy.

Another approach is to use lower-frequency systems to cue fire-control radars and extend their range against stealthy targets. This theory digs into how radars detect aircraft. A radar must discern a target’s return from environmental clutter and noise generated by its own electronics. Designers chose a ratio between signal and noise (S/N) at which the radar has an acceptable probability of detecting real targets, typically 90%, and an acceptable rate of false alarms, usually one per minute.

To improve S/N ratio, radars integrate the returns from numerous pulses. Since a target will be present at every pulse, but noise varies randomly, the signal builds up until the S/N ratio is achieved and the computer declares a target. Therefore, if a radar knows roughly where to look, it can send more pulses into a restricted search cone and increase the S/N ratio from farther away.

Theoretically, this technique can increase fire-control radar ranges up to those of the cueing sensors, but in practice it has limitations, such as signal processing hardware. A radar must generate enough pulses to cover its entire field of view, which means several thousand combinations of azimuth and elevation for regular search and even dozens to hundreds for a restricted search. For each angle, the radar must break up every return into dozens of range bins and each range-bin must be broken up into many velocity bins. Complex mathematics must also be performed for the bins and their resulting values before a target can be declared. So processing and memory requirements build up quickly.

In addition, signal processing is best done digitally, but that requires quantizing the analog signal into series of bits called words. The sensitivity of this analog-to-digital converter must be set so that above-average signals do not saturate the converter. But this means that low-end signals can register as zero, and stealth fighters reflect less than 1/1000 the energy of conventional fighters. Larger words can be used, but every bit increases processing and memory requirements, increasing cost, size, weight and complexity.

While the processor details for the S-400 SAM and Su-35 fighter are not known, the manufacturers’ information suggests the ranges of their X-band fire-control radars cannot be extended significantly. Almaz-Antey’s quoted range for the S-400’s Gravestone radar of 250 km for a 4m2 RCS target is specifically stated as with designation from the Big Bird search radar. The S-400’s Big Bird can detect 1m2 targets at 338 km (equivalent to 478 km for a 4m2 target) and designate 4m2 targets at 390 km, and still Gravestone’s detection range is less. As for the Su-35’s Irbis-E, it only detects a 3m2 target at 400 km in a special narrow-angle, maximum-power search mode; detection range in standard search is half that. This suggests the higher figures for both systems are achieved only when the radar already receives external cueing.

Furthermore, extending radar range with external cueing would apply to conventional as well as stealth targets. The RCSs of conventional aircraft also grow with longer wavelengths and increasing signal integration time would be effective for a non-stealthy target. Therefore, this capability would likely be reflected in a greater detection range against higher RCS targets.

A third approach to engaging stealth aircraft is to combine VHF-command mid-course guidance and X-band active terminal guidance. In this scheme, a lower-frequency radar directs a missile towards a stealthy aircraft until the onboard X-band radar acquires the target. The U.S. Navy, for example, plans to use UHF-band AESA radars on its E-2Ds to provide mid-course guidance to SM-6 SAMs.

The concept holds promise, but would first require the lower-frequency radar to be able to localize the target enough for the missile to detect it. Missile sensors cannot match the range of fighter radars because they have far less power and gain. They only have to acquire targets towards the end of the flight, but against an F-35 or F-22 they will be looking at aircraft detectable at less than a fifth of the usual range. In addition, even if detected by the missile, stealth-fighter electronic countermeasures are made more effective by their low observability. This is because spoofing techniques, such as range- or velocity-gate pull-off, require the jamming signal to overwhelm the aircraft’s real radar return, which is smaller for a stealth fighter.

When questioned about lower-frequency radar, some F-35 program officials concede detection is possible, but dismiss the possibility of engagement. This assessment appears to accurately reflect the state of the stealth-counterstealth balance – for now. But faster processors, smaller memory chips, stronger transmitters, better signal processing and superior antenna technology all have the potential to erode the advantage current stealth aircraft enjoy. When it comes to the state of stealth, neither side can claim final victory yet.

Anatomy of a Stealth Fighter Shootdown

Perhaps the best cautionary tale against assuming stealth fighters are invulnerable is the story about how one has already been shot down. Four days into NATO’s air campaign over Serbia, an F-117A was brought down by an SA-3 northwest of Belgrade. The alliance’s air forces assumed Serbia’s outdated equipment posed a minimal threat to the Nighthawk. They didn’t even mind the crowds, which are believed to have included Serbian agents, outside their airbases watching planes takeoff.

The stealth fighters flew the same routes every night on their way to Belgrade. On the ground, Lt. Col. Zoltan Dani, commander of the 3rd Missile Battalion, 250th Air Defense Missile Brigade, was able to eavesdrop on the unencrypted radio traffic between fighter pilots and the E-3 AWACS directing them. Colonel Dani had studied the F-117’s technology and positioned his unit where he determined to be the optimum position from which to detect it.

On the night of March 27, 1999, weather had forced the cancellation of all NATO strike missions with the exception of eight F-117s. A little after 8pm, radar units in northern Serbia reported they had detected a target with a small RCS. At 26,000 ft., an F-117 was heading northwest from Belgrade after striking its target.

Col. Dani ordered his P-18 search radar (a 1970s upgrade of the P-12) activated. Initially, it detected nothing, but then he instructed the operator to activate an “innovation” and a target appeared on the screen at 31-37 mi. Colonel Dani has declined to detail the “innovation” but it’s believed to have enabled operation at an even lower frequency than normal. When the target closed adequately, the SA-3 operators began turning on their radars for 20-second intervals, to minimize exposure to NATO’s anti-radar missiles. On the third try, they locked on a target from 8-9 mi. away and fired off a pair of missiles at its 4 o’clock. The first flew over the F-117, failing to detonate, but the second struck, blowing off its left wing and sending it uncontrollably towards the ground.

The first lesson of this incident is that survivability is a combination of technology and tactics. When militaries use advanced technology without regard for tactics, a tactically skilled opponent can exploit a weakness, particularly if combined with a bit of technical ingenuity. Col. Dani knew the F-117’s flighpath and the Nighthawks were the only aircraft around. That makes detection a lot easier than when an aircraft that can approach from any direction in a crowded sky. Hence the importance of tactics and also an underrated part of stealth technology: the electronic receivers that detect radar emissions and the computers that chart courses which minimize the chances of detection.

The second lesson is the continuing importance of combined arms operations. Stealth fighters might be able to do some jobs alone but they are more effective, and survivable, when combined with broadband stealth aircraft, jamming, anti-radar missiles, decoys and stand-off weapons. After the F-117 was shot down, it is believed U.S. EA-6B electronic attack aircraft began supporting the F-117s and strike aircraft gave more attention to search radars.

The third lesson is the potential vulnerability of stealth aircraft to lower frequencies. It is possible though that the F-117 is more susceptible to them than its successors. While it has a flat bottom, its fully faceted airframe might be more vulnerable than a blended shape at lower frequencies, because of surface wave effects, and the modified P-18 may have caught it an angle to exploit that. It also used early RAM. On the other hand, today’s lower frequency radars have far greater detection ranges than the P-18 and if they can solve the engagement problem they may be able to engage modern stealth fighters. To paraphrase the words of Col. Dani: there is no such thing as “invisible to radar,” there is only varying degrees of visibility.
 
Kolmas osa tuosta artikkelisarjasta:

https://www.scribd.com/document/329...Aircraft?secret_password=NIcRZVMDxEptJyYjEPiC

From the beginning of the F-35 program, Lockheed’s goal was achieve acceptable stealth while reducing maintenance needs. Use of several RAM techniques continued, including S-curved, RAM-lined ducts, edge treatments and what appear to be picture frames abutting many gaps. Early reports also indicated the number of parts making up the skin would be minimized and laser-alignment would fit pieces so precisely “that 99% of maintenance requires no restoration of low-observable surfaces,” Lockheed says. The goal was likely to make the intensive gap-bridging procedures unnecessary.

But during development, something happened. First, program officials began hinting the F-35 might be stealthier than the F-22; hard to believe, given its less-disciplined shape. Then officials started referring to a material secret, a “conductive layer . . . where the magic happens.” In May of 2010, Tom Burbage, then executive vice president for the F-35 program, disclosed the incorporation of “fiber mat” technology, describing it as the “biggest technical breakthrough we’ve had on this program.”

The fiber mat would replace many RAM appliques by being cured into the composite skin, making it durable. Burbage further specified the mat featured a “non-directional weave”— which would ensure EM properties do not vary with angle. Baked into the skin, this layer could vary in thickness as necessary. Lockheed declined to provide further details, citing classification. Without further evidence, fiber mat would imply use of fibers, rather than particles, which would make for stronger surfaces and the word “conductive” points to carbon-based RAM.

But only a month before Burbage’s disclosure, Lockheed filed a patent claiming the first method of producing a durable RAM panel. The patent details a method for growing carbon nanotubes (CNT) on any kind of fiber—glass, carbon, ceramic or metal—with unprecedented precision in control of length, density, number of walls, connectivity and even orientation. The CNT-infused fibers can absorb or reflect radar, and connectivity among the CNTs provides pathways for induced currents.

Significantly, the CNTs can be impregnated with iron or ferrite nanoparticles. Fibers can have differing CNT densities along their lengths and homogenous fibers can be layered or mixed. The embodiments described include front layers with impedance matching air, use of quarter-wavelength depths for cancellation, stepped or continuous CNT-density gradients and continuously varying densities at specific depths for broadband absorption. The fibers can be disposed with “random orientation” in materials including “a woven fabric, a non-woven fiber mat and a fiber ply.”

The patent claims composites with CNT-infused fibers are capable of absorbing EM waves from 0.1 MHz to 60 GHz, a bandwidth unheard of in commercial absorbers, with particular effectiveness in L- through K-band. The patent does not quantify the absorptivity, but does say the panels would be “nearly a black body across . . . various radar bands.” Also, interestingly, a layer can be composed so an attached computer can read the induced currents in the fibers, making the layer a radar receiver.

While the patent mentions stealth aircraft, it does not mention the F-35 specifically, and the manufacturing readiness level of the material at the time it was granted is not known. But the proximity in timing and technology of the filing to the “fiber mat” disclosure is hard to ignore. Asked to comment on whether CNT-infused fiber RAM is in use on the F-35 and whether it is the technology to which Burbage had referred, Lockheed Martin spokesman Mike Rein stated only, “We have nothing to add to what was outlined in the patent submittal.”

Even if CNT-infused fibers are not the F-35’s “magic” layer, they may represent the new state-of-the-art in RAM. And while this may be the biggest development in the technology, it is not the only one. New materials are being tested all the time. In particular, metamaterials which use sub-wavelength geometric structures to impart qualities that do not exist in nature have received particular attention for their stealth applications. The future of stealth may be inseparable from the future of RAM.

Patentti joka on tuossa lainauksessa mainittu:

https://patents.google.com/patent/US20100271253

Itse epäilen että ainakin tällä hetkellä häiveteknologia kehittyy nopeammin kuin sitä havaitsemaan pyrkivä tutkateknologia.
 
Kolmas osa tuosta artikkelisarjasta:

https://www.scribd.com/document/329...Aircraft?secret_password=NIcRZVMDxEptJyYjEPiC



Patentti joka on tuossa lainauksessa mainittu:

https://patents.google.com/patent/US20100271253

Itse epäilen että ainakin tällä hetkellä häiveteknologia kehittyy nopeammin kuin sitä havaitsemaan pyrkivä tutkateknologia.

Tuota en ollutkaan vielä lukenut. On kyllä erittäin mielenkiintoinen, jos toimii noin hyvin. Ennenkaikkea tuo taajuusvaste on jotain käsittämätöntä.
 
Tuossa toimitetussa tekstissä itse asiassa minun mielestäni patentin tekstiä "tulkitaan hiukan yli"; minusta siellä sanotaan, että nämä nanotuubit voidaan virittää eri taajuuksille. Siellä ei sanota, että samanaikaisesti. Patentin tekstistä ei käy ilmi, mitä aaltoalueita voidaan samanaikaisesti vaimentaa yhdessä rakenteessa, tai voidaanko.
 
Back
Top